Linux From Scratch
Version 5.0

Gerard Beekmans

Copyright © 1999-2003 Gerard Beekmans

This book describes the process of creating a Linux system from scratch, using nothing
but the sources of the required software.

Copyright (c) 1999-2003, Gerard Beekmans
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

o Redistributions in any form must retain the above copyright notice, this list of
conditions and the following disclaimer.

e Neither the name of "Linux From Scratch" nor the names of its contributors
may be used to endorse or promote products derived from this material without
specific prior written permission.

e Any material derived from Linux From Scratch must contain areference to the
"Linux From Scratch" project.

THIS SOFTWARE ISPROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Dedication
This book is dedicated to my loving and supportive wife Beverly Beekmans.

Tabl

Part | —

Part 11 -

e of Contents

... 9
FOPBWOIT ... 11
AUdIEINCE. ... nnne e 11
Who would want to read thiSbOOKcccooiriiiiiiiieieeeeeee 11
Who would not want to read thiSBOOK.............cccooeiiiiiniiiiieece 12
Prer@QUISITES. ... 13
SHUCIUI ...t ne e 13
Part | — INtrOTUCTION ..o 13
Part 1 - Preparing for the build.............ccoooiiiiiiieec e 13
Part [11 - Building the LFES SyStemcooiiiiiiieee e 13
Part IV — APPENAICESoooiiieiieiiee et 14
INEFOTUCTION. ...t 15
Lo INEFOQUCTION ... 17
How things are going to DEdONE...........ccviiiiiiiieiece e 17
Conventions used in thiSBOOK.............coooiiiiiiiie 18
BOOK VEISION.......eiiiiieiecc e 19
ChanNQEIOFcoveeieiiie e 19
RESOUICES ...ttt 34
ACKNOWIEAGMENES ...t 35
2. Important iNfOrmMatioNcceeieereeriiesee e 39
ADOUL BLFS ... 39
ADOUL SBUS.......oeeieeeee e 39
ADOUL thE TESE SUITES......eeiiiieieee e 40
HOW t0 @SK fOr NEIP....c.eeieee e 40
Preparing for the bUITdcoovoiii e 43
3. Preparing anew Partitioncccceeoeeeieeneeieenieesee e 45
INEFOTUCTION ... 45
Creating anew Partitioncoceereerieeieesee e 45
Creating a file system on the new partition...........cccoeereerieeiieneennens 45
Mounting the New Partitionccceeieererieene e 46
4. Thematerials: packages and patChesccoeveieiiienic e 47
INEFOTUCTION ... 47
All the PaCKAgES.........ccveieiieeee e 48
Needed PAICNES.eeiiii e 52
5. Constructing atemporary SYStEMccceoeereeriieenieneeseeesee e 55
INEFOTUCTION ... 55
Toolchain technical NOLES...........ccviiiiiiiie e 56
Creating the SLFS/tO0IS dir€CtOrYcoeerverieiecieseeee e 59
AddiNg the USEr IFS......oeiee e 60
Setting up the enviroNMENt...........coove e 60
Installing Binutils-2.14 - PaSS 1........ccceiieiiiiiienee e 61

INStalling GCC-3.3.1 - PaSS L......cccoviieiieiieeieeee e 64

Installing Linux-2.4.22 headerScccoeiiiiiieiienee e 66

INStAllING GHIDC-2.3.2.....c.eeiieeee e 68
"LoCKiNg iN" GlIDC ..o 71
INSLAIIING TCI-8.4.4 ... e 73
Installing EXPECt-5.39.0cooiiiriiiiieieesie e 75
INStalliNng DEAGNU-1.4.3ooieiieeieeieeeee e 77
INStalling GCC-3.3.1 - PSS 2.....cceeiiieiieriieeeeee e 78
Installing BinutilsS-2.14 - PaSS2......cccceeiiiieiee e 81
INStAlliNG GAWK-3.1.3 ... e 83
INstalling CoreULilS-5.0......cceiiiiiiiciiieeee e 84
INStAlliNG BZIP2-1.0.2.......eiiiieieeee e 85
INSLAIIING GZIP-1.3.5. e 86
Installing DIffUtilS-2.8.1........ooiiiiiieee e 87
Installing FINAULIS-4.1.20........c.cooiiiiieieie e 88
INStalling MaKe-3.80coiuiiiieiiereeee e 89
INSLAIIING GreP-2.5.1ooiiiiiieeeee e 90
INSLAIIING SEA-4.0.7 ... 91
INstalling GEteXt-0.12.1.......ccuoieiiirierieeee e 92
INStAlliNg NCUISES-5.3......ooiieieee e 93
INStalling PatCh-2.5.4.........cooiiiieee e 94
INStAllING Tar-1.13.25.......coiiiiieeeie e 95
INStAlliNG TEXINFO-4.6.....c..eeiieieee e 96
Installing Bash-2.050c.oooiiiiiiiieeeee e 97
Installing Uti-lINUX-2.12........cccooiiiiiiieie e 98
INStalliNG PErl-5.8.0......ccoiiiiiiieie e 99
SUTPPING ettt 100
Part [11 - Building the LFS SySteM.......cccuveiiiiicieee e 101
6. Installing basic system Software...........cccoceveeiieneneeeeee 103
INEFOTUCTION ... 103
About debugging SYMDOIS.........cociiiiiiiiieeeeec e 103
Entering the chroot environment..............cocooieiiieeie e 104
Changing OWNEISNIP........ceiueeiiieiiesee e 105
Creating dIrECLOMES........eeiueeiee et 105
Mounting the proc and devpts file SyStemscccocveieeriieniiesicieene 106
Creating essential SymlinkScocoeviriieiinee e 107
Creating the passwd and group filesccccvviiiieneicc e, 107
Creating devices (MaKedeV-1.7)ccccereereeririeieenee e 109
Installing Linux-2.4.22 headEr'Scccoveiiiiieeiieeeeee e 111
Installing Man-pages-1.60..........c.ceeieeieiririeieesee e 114
INStAlING GlIDC-2.3.2.....ceeiee e 115
Re-adjusting the toolChain..............cocveiiiiiiiice e 118
INStalliNg BINUEHIS-2.14......ccoiiieeieeeeee e 121
INSLAIIING GCC-3.3. 1.t 123
Installing CoreUtilS-5.0.......coiiiieiiie e 125
INSLAIIING ZITD-1. 1.4 127
Installing LIS-ULHS-0.3 ..o 129

Installing FINAULHS-4.1.20ccooiiiiiiieeieeeee e 130

INStalliNg GaWK-3. 1.3, 131
INStalliNg NCUISES-5.3 ... 133
INSLAIIING VIMEG.2 ... 135
INSLAIIING M4-1.4 ... 137
INStalling BiSON-1.875.......coiiiiiieiieiee e 138
INSLAIIING LESS-38L.......ceeiiiiiiiieiieiieeree et 139
INStalling Groff-1.19ooiieiiie e 140
INSLAIIING SEA-4.0.7 ... 141
INStalliNg FIEX-2.5.48.........cooiiiieee e 142
Installing Gettext-0.12.1.........cociiiiereeeieeree e 144
INstalling Net-t00IS-1.60ccceeiieriiiieeiee e 145
INStalliNg INEIULHS-1.4.2 ... 147
INStalliNg Perl-5.8.0.......cooiiiiiiieiee e 149
INStAlliNg TEXINFO-4.6.....c.oeeieiiieeeeee e 150
INstalling AULOCONT-2.57ooiiiiiiiiieeeeee e 151
Installing AUtOMEKE-1.7.6........c.ceiiiriiiieeiie e 152
Installing Bash-2.05Dccooiiiiiiiie e 153
INStAlliNG FIlE-4.04........ooiiieeee e 154
Installing LibtOOI-1.5cc.ooiiiiieie e 155
INStAlliNG BZIP2-1.0.2.....c.eeiiiiiieeieeeeeee et 156
Installing DIffutilS-2.8.1.........ooiiiiieeeee e 158
INSLAIIING EA-0.2 ... 159
INstalling KBA-1.08cceiiiiiieiieee e 161
INstalling E2fSProgs-1.34coceeiieiieeieeniee e 162
INSLAIING Grep-2.5.1.....cciiiiieeieeeee e 164
INStalling Grub-0.93.......coeiiieeee e 165
INSLAIING GZIP-1.3.5 ..o 166
INStalling Man-1.5M2.........cccoiiiiiiieeeeee e 167
INstalling Make-3.80.........coouiiiiiiieieecee e 169
Installing ModUtilS-2.4.25..........cooiiiieeeeeeee e 170
INStalling PalCh-2.5.4c..ooiiiiieeeee e 171
INstalling ProCinfo-18c.ooiieiiiiiiiieeiee e 172
INStalling ProcPps-3.1.11 ... 173
INStalling PSMISC-21.3 ..o 174
Installing Shadow-4.0.3cooiiiiee e 175
INstalling SysKIOQO-1.4.L.........ooiieieeiie e 178
INStalling SYSVINIT-2.85ccoiiieieieeeee e 179
INStAlliNG Tar-1.13.25......c..ciiiiiieeiie e 181
Installing Uti-lINUX-2.12..........ccooiiiiiiiieieesee e 182
INStalling GCC-2.95.3.......ce e 184
Revised chroot command............cccooeiriiiiieiieee e 185
Installing LES-BOOLSCIIPIS-1.12ccuviiieeiieiiie e 186
Configuring SyStem COMPONENLScceerverrierieerre e 187
Setting up SyStemM DOOL SCIIPESveevveeieeriee e 189
INEFOTUCTION ... 189

How does the booting process with these scriptswork?...................... 189

Configuring the SEtClOCK SCIPL.....c..vvivieiieiieee e 190

Do | need the loadkeys SCript?..........cveieeiieeeieenee e 191
Configuring the sysklogd SCIHPL........coveeiieiie e 191
Configuring the localNet SCHPL..........oooviriieiieiieeee e 191
Creating the /etc/hostS file.........coeiiiiicie 191
Configuring the NEEWOrK SCIHPLceivieiieieeee e 192
8. Making the LFS system bootable............cccoviiiiieniiniicieccecee 195
INEFOTUCTION ... 195
Creating the /etc/fstab fil€.........ccveiiiiiee e 195
INSLAIIING LINUX-2.4.22......cciieieeieeeieeeee e 196
Making the LFS system bootable.............coceeieeiiiniieiicnceececeeee 197
9. TREENG ... e 201
TREENG ... e 201
GEL COUNLEA ...t 202
ReEDOOLING the SYSEEM ... 202
WHNEE NMOW?......e e 203
Part [V — APPENTICES........ooiiiiiieiieeie e 205
A. Package descriptions and dependencCies..........cccocveveeieeriieeieesie s 207
INEFOTUCTION ... 207
AULOCONT ...t 208
AULOMBKE ... 209
BaSH. ... 210
BINULITS ... 211
BISON ... s 212
BZIP2 ... s 213
COTBULITS ... 214
DGAGNU. ...ttt 218
DIFFULILS e 219
A o TS 219
B s 221
EXPECL ... 222
L s 223
FINAUETS. ... 223
FLEX e 224
GAWK .. 225
GCC e 226
GEILEXL ..t 227
GlIDC... e e 229
L= o T PSPPSR 232
GO s 233
GIUD .. s 235
(€] o USSR 235
INELULITS. ... e 236
KOO, .. 237
LB ettt 239
LFES-BOOISCIIPLS ...ttt 239

1] o] (oo) I 242
Linux (the KEMED) ..o 242
M. 243
MBKE ... 244
MAKEDEV ... 245
MaAN ... e 245
IMBINFPAGESeeeee ettt ettt ettt e s e s e e e e e e eanae e e e aan 246
MOAULILS ..o 247
NCUISES. ..ottt e e s e e e e e e e e s s e e e e s e e e s sbaaaa s 248
NE-LOOIS. ... 249
= (0 A 250
P . 251
ProCinfO.... e 253
PrOCPS. ...ttt 253
PSMISC ... 255
T o 255
SHAOOW ...t 256
SYSKIOGU. ... 258
SYSVINIT. et 259
= 260
B 260
TEXINTO i 261
L1 1 T 10)RR 262
VM 265
ZID 266

B. Index of programsand library files..........ccooeriieiiniiiie, 269

Preface

10

Foreword

Having used a number of different Linux distributions, | was never fully satisfied with
any of them. | didn't like the arrangement of the bootscripts. | didn't like the way
certain programs were configured by default. Much more of that sort of thing bothered
me. Finally | realized that if | wanted full satisfaction from my Linux system | would
have to build my own system from scratch, using only the source code. | resolved not
to use pre-compiled packages of any kind, nor CD-ROM or boot disk that would install
some basic utilities. | would use my current Linux system to develop my own.

Thiswild idea seemed very difficult at the time and often seemed an impossible task.
After sorting out all kinds of problems, such as dependencies and compile-time errors,
a custom-built Linux system was created that was fully operational. | called this system
a Linux From Scratch system, or LFS for short.

| hope you will have a great time working on your own LFS!

Gerard Beekmans
gerard@linuxfromscratch.org

Audience

Who would want to read this book

There are many reasons why somebody would want to read this book. The principal
reason being to install a Linux system straight from the source code. A question many
peopleraiseis "Why go through all the hassle of manually building a Linux system
from scratch when you can just download and install an existing one?'. That is a good
question and is the impetus for this section of the book.

One important reason for LFS's existence is to help people learn how a Linux system
works from theinside out. Building an LFS system hel ps demonstrate to you what
makes Linux tick, how things work together and depend on each other. One of the best
things that this learning experience provides is the ability to customize Linux to your
own tastes and needs.

A key benefit of LFS isthat you have more control of your system without relying on
someone else's Linux implementation. With LFS, you arein the driver's seat and
dictate every aspect of your system, such as the directory layout and bootscript setup.
Y ou also dictate where, why and how programs are installed.

Another benefit of LFS isthe ability to create a very compact Linux system. When
installing aregular distribution, you are usually forced to install several programs
which you arelikely never to use. They'rejust sitting there wasting precious disk space
(or worse, CPU cycles). It isn't difficult to build an LFS system less than 100 MB.
Does that till sound likealot? A few of us have been working on creating avery

11

small embedded LFS system. We successfully built a system that was just enough to
run the Apache web server with approximatey 8MB of disk space used. Further
stripping could bring that down to 5 MB or less. Try that with a regular distribution.

We could compare distributed Linux to a hamburger you buy at a fast-food restaurant
— you have no idea what you are eating. LFS, on the other hand, doesn't giveyou a
hamburger, but the recipe to make a hamburger. This allows you to review it, to omit
unwanted ingredients, and to add your own ingredients which enhance the flavor of
your burger. When you are satisfied with the recipe, you go on to preparing it. You
make it just the way you likeit: broil it, bake it, deep-fry it, barbecueit, or eat it tar-tar
(raw).

Another analogy that we can use is that of comparing LFS with a finished house. LFS
will give you the skeletal plan of a house, but it's up to you to build it. You have the
freedom to adjust your plans as you go.

One last advantage of a custom built Linux system is security. By compiling the entire
system from source code, you are empowered to audit everything and apply all the
security patches you feel are needed. Y ou don't have to wait for somebody else to
compile binary packages that fix a security hole. Unless you examine the patch and
implement it yoursdf you have no guarantee that the new binary package was built
correctly and actually fixes the problem (adequatdly).

There are too many good reasons to build your own LFS system for them all to be
listed here. This section is only thetip of the iceberg. Asyou continuein your LFS
experience, you will find on your own the power that information and knowledge truly
bring.

Who would not want to read this book

There are probably some who, for whatever reason, would fedl that they do not want to
read this book. If you do not wish to build your own Linux system from scratch, then
you probably don't want to read this book. Our goal isto help you build a complete and
usable foundation-level system. If you only want to know what happens while your
computer boots, then we recommend the "From Power Up To Bash Prompt" HOWTO.
The HOWTO builds a bare system which is similar to that of this book, but it focuses
strictly on creating a system capable of booting to a BASH prompt.

While you decide which to read, consider your objective. If you wish to build a Linux
system while learning a bit along the way, then this book is probably your best choice.
If your objectiveis strictly educational and you do not have any plans for your finished
system, then the "From Power Up To Bash Prompt" HOWTO is probably a better
choice.

The"From Power Up To Bash Prompt” HOWTO is located at http://axiom.anu.edu
.au/~okeefe/p2b/ or on The Linux Documentation Project's website at http: //www
.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html.

12

Prerequisites

This book assumes that its reader has a good deal of knowledge about using and
installing Linux software. Before you begin building your LFS system, you should
read the following HOWTOs:

Software-Building-HOWTO

Thisis a comprehensive guide to building and installing "generic" UNIX
software distributions under Linux. This HOWTO is available at
http://ww._tldp.org/HOWTO/Software-Building-HOWTO.html.

TheLinux Users Guide

This guide covers the usage of assorted Linux software and is available at
http://espc22._murdoch.edu.au/~stewart/guide/guide._html.

The Essential Pre-Reading Hint

Thisis an LFS Hint written specifically for new users of Linux. It ismostly a
list of links to excellent sources of information on a wide range of topics. Any
person attempting to install LFS, should at least have an understanding of
many of thetopicsin this hint. It isavailable at http://ww. linuxfromscratch
.org/hints/downloads/files/essential_prereading.txt

Structure

This book is divided into the following four parts:

Part | - Introduction

Part | explains a few important things on how to proceed with the installation, and
gives meta information about the book (version, changelog, acknowledgments,
associated mailing lists, and so on).

Part Il - Preparing for the build

Part |1 describes how to prepare for the building process: making a partition,
downloading the packages, and compiling temporary tools.

Part Il - Building the LFS system

Part |11 guides you through the building of the LFS system: compiling and installing all
the packages one by one, setting up the boot scripts, and installing the kernel. The

resulting basic Linux system is the foundation upon which you can build other
software, to extend your systemin the way you like.

Part IV - Appendices

Part IV consists of two appendices. Thefirst isan alphabetical list of all the packages
that areinstalled — for each package giving its official download location, its contents,
and its installation dependencies. The second appendix lists all the programs and
libraries installed by these packages in alphabetical order, so you can easily find out to
which package a certain program or library belongs.

(Much of thefirst appendix is integrated into Parts |1 and I11. This enlarges the book
somewhat, but we believe it makes for easier reading. Now you don't have to keep
referencing the appendix while doing the installation. This going back and forth would
be areal chore, especially if you'rereading a plain text version of the book.)

14

Part | - Introduction

15

16

Chapter 1
Introduction

How things are going to be done

You aregoing to build your LFS system by using a previoudly installed Linux
distribution (such as Debian, Mandrake, Red Hat, or SUSE). This existing Linux
system (the host) will be used as a starting point, because you will need programs like
acompiler, linker and shell to build the new system. Normally all the required tools are
available if you sdected "development” as one of the options when you installed your
distribution.

In Chapter 3 you will first create a new Linux native partition and file system, the place
where your new LFS system will be compiled and installed. Then in Chapter 4 you
download all the packages and patches required to build an LFS system, and store
them on the new file system.

Chapter 5 then discusses the installation of a number of packages that will form the
basic development suite (or toolchain) which is used to build the actual systemin
Chapter 6. Some of these packages are needed to resolve circular dependencies — for
example, to compile a compiler you need a compiler.

Thefirst thing to be done in Chapter 5 is build a first pass of the toolchain, made up of
Binutils and GCC. The programs from these packages will be linked statically in order
for them to be usable independently of the host system. The second thing to do is build
Glibc, the C library. Glibc will be compiled by the toolchain programs we just built in
thefirst pass. Thethird thing to do is build a second pass of the toolchain. Thistime
the toolchain will be dynamically linked against the newly built Glibc. The remaining
Chapter 5 packages are all built using this second pass toolchain and dynamically
linked against the new host-indegpendent Glibc. When thisis done, the LFS installation
process will no longer depend on the host distribution, with the exception of the
running kernel.

You may bethinking that "this seems like a lot of work, just to get away from my host
distribution”. Well, afull technical explanation is provided at the start of Chapter 5,
including some notes on the differences between statically and dynamically linked
programs.

In Chapter 6 your real LFS system will be built. The chroot (change root) programis
used to enter avirtual environment and start a new shell whose root directory will be
set to the LFS partition. Thisis very similar to rebooting and instructing the kernel to
mount the LFS partition as the root partition. The reason that you don't actually reboot,
but instead chroat, is that creating a bootable system requires additional work which
isn't necessary just yet. But the major advantage is that chrooting allows you to
continue using the host while LFS is being built. While waiting for package

17

compilation to complete, you can simply switch to a different VC (Virtual Console) or
X desktop and continue using the computer as you normally would.

To finish the installation, the bootscripts are set up in Chapter 7, the kernel and
bootloader are set up in Chapter 8, and Chapter 9 contains some pointers to help you
after you finish the book. Then, finally, you're ready to reboot your computer into your
new LFS system.

Thisis the process in a nutshell. Detailed information on the steps you will take are
discussed in the chapters and package descriptions as you progress through them. If
something isn't completely clear now, don't worry, everything will fall into place soon.

Please read Chapter 2 carefully as it explains a few important things you should be
aware of before you begin to work through Chapter 5 and beyond.

Conventions used in this book

To make things easy to follow, there are a number of conventions used throughout the
book. Following are some examples:

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise
noted in the surrounding text. It is also used in the explanation sections to
identify which of the commands is being referenced.

install-info: unknown option ~--dir-file=/mnt/Ifs/usr/info/dir"

Thisform of text (fixed width text) is showing screen output, probably as the
result of commands issued, and is also used to show filenames, such as
/etc/1d.so.conf.

Emphasis
This form of text is used for several purposes in the book, mainly to emphasize
important points, and to give examples of what to type.

http://ww. linuxfromscratch.org/

This form of text is used for hyperlinks, both within the book and to external
pages such as HOWTOs, download | ocations and websites.

cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:

This type of section is used mainly when creating configuration files. Thefirst
command tells the system to create the file $LFS/etc/group from whatever is
typed on the following lines until the sequence EOF is encountered. Therefore,
this whole section is generally typed as seen.

18

Book version

Thisisversion 5.0 of the Linux From Scratch book, dated November 5th, 2003. If this
book is more than two months old, a newer and better version is probably already
available. To find out, check one of the mirrors listed on http://www. linuxfrom-
scratch .org/.

Changelog
5.0 - November 5th, 2003
e Upgraded to:

o automake-1.7.6
o bash-2.05b
o binutils-2.14
o €2fsprogs-1.34
o file4.04
o findutils-4.1.20
o gawk-3.1.3
o gcc-3.3.1
o gQettext-0.12.1
o 0libc-2.3.2
o glibc-2.3.2-sscanf-1.patch
o grep-25.1
o groff-1.19
o 0zip-1.35
o less-381
o Ifs-bootscripts-1.12
o libtool-1.5
o linux-2.4.22
o man-1.5m2
o man-1.5m2-80cols.patch
o man-1.5m2-manpath.patch
o man-1.5m2-pager.patch
o Mman-pages-1.60

19

20

modutils-2.4.25
procps-3.1.11
procps-3.1.11.patch
psmisc-21.3
sed-4.0.7
Sysvinit-2.85
tar-1.13.25
texinfo-4.6
util-linux-2.12
vim-6.2

bash-2.05b-2.patch
bison-1.875-attribute.patch
coreutils-5.0
coreutils-5.0-uname.patch
coreutils-5.0-hostname-2.patch
degagnu-1.4.3

expect-5.39.0
expect-5.39.0.patch
gawk-3.1.3.patch

gcc-2.95.3

gce-2.95.3-2.patch
gcc-2.95.3-no-fixinc.patch
gce-2.95.3-returntype-fix.patch
gce-3.3.1-no_fixincludes-2.patch
gcc-3.3.1-specs-2.patch

gcc-3.3.1-suppress-libiberty.patch

grub-0.93
grub-0.93-gcc33-1.patch
inetutils-1.4.2
Ifs-utils-0.3
ncurses-5.3-¢etip-2.patch

O

o

ncurses-5.3-vsscanf.patch
perl-5.8.0-libc-3.patch

shadow-4.0.3-newgroup-fix.patch

tcl-8.4.4
zlib-1.1.4-vsnprintf.patch

Removed:

o

o

O

November 2nd, 2003 [alex]: Appendix A - Commented out all the "last

bin86-0.16.3

fileutils-4.1
fileutils-4.1.patch
findutils-4.1-segfault.patch
findutils-4.1.patch
glibc-2.3.1-libnss.patch
glibc-2.3.1-root-perl.patch
0zip-1.2.4b.patch

lilo-22.2

netkit-base-0.17
sh-utils-2.0
sh-utils-2.0.patch
sh-utils-2.0-hostname. patch
tar-1.13.patch

textutils-2.1

vim-6.1.patch

checked against” lines.

October 28th, 2003 [greg]: Strengthened the sedsin "Locking in Glibc" and
"Re-adjusting the toolchain™ sections.

October 26th, 2003 [greg]: Chapter 6 - Glibc: Added command to create
/etc/ld.so.conf to match Chapter 5 Glibc. Closes bug 700.

October 24th, 2003 [alex]: Appendix A - Changed the dependencies to the
concise format, based on Tushar's post .

October 23rd, 2003 [gerard] Chapter 9 - The End: Changed the /etc/1fs
filenameto /etc/Ifs-release to be more consistent with other distributions

out there.

21

22

October 23rd, 2003 [alex]: Changed most of the "Chapter” references to proper
"xref" cross references .

October 22nd, 2003 [alex]: Chapter 6 - Gawk and Shadow: Adjusted the text.
And added some markup elsewhere.

October 22nd, 2003 [alex]: Chapter 6 - Entering the chroot environment:
Dropped the set +h command, as it is pointless there: it's redone several
sections later.

October 15th, 2003 [greg]: Chapter 9: Reworked final strip command.
Rel ocated paragraphs about directory removal from Chapter 6.

October 14th, 2003 [greg]: Chapter 8 - Making the LFS system bootable:
Expanded Grub details and added a warning.

October 14th, 2003 [alex]: Appendix A - Updated the contents of Perl and
Procps.

October 14th, 2003 [alex]: Chapter 4 and 5 - Added a suggestion to use
$L FS/sources as the working and storage place.

October 13th, 2003 [greg]: Chapter 9 - Rebooting the system: Reworked
umount commands.

October 11th, 2003 [alex]: Adapted the required disk space values and SBUS,
as posted by Bruce Dubbs.

October 11th, 2003 [alex]: Chapter 5 - Toolchain technical notes: Added and
changed some markup.

October 9th, 2003 [gerard]: Upgraded to Ifs-bootscripts-1.12.

October 9th, 2003 [greg]: Performed internal markup reworking to fix an
extraneous whitespace problem in "tidy generated” web site pages. Essentially
replace all occurrences of <para><screen> with <screen> (and the matching

closing tags).

October 9th, 2003 [alex]: Chapter 6 - Basic Networking: Moved one half to the
Lfs-Utils section, the other half to Perl.

October 8th, 2003 [alex]: Chapter 8 - Making bootable: Adapted the style of
the screens, and reworded some paragraphs.

October 8th, 2003 [alex]: Removed a series of unused entities.

October 7th, 2003 [jeremy]: Added notes to the linking tests in chapter 5 and 6
stating that blank output is a bad thing.

October 7th, 2003 [alex]: Changed the patch entities to contain the full
filenameinstead of just the version number.

October 7th, 2003 [jeremy]: Chapter 1 - Added a note regarding #L FS-support
on IRC.

October 7th, 2003 [greg]: Preface: Add note about the Essential Pre-Reading
Hint. Closes Bug 585.

October 6th, 2003 [alex]: Changed the style of the Contents subsectionsin
Chapters 5 and 6 and Appendix A.

October 6th, 2003 [greg]: Simplified sedsin "Locking in Glibc" and "Re-
adjusting the toolchain" sections. Rearranged "How things are going to be
done" section.

October 5th, 2003 [greg]: Chapter 5: Added new section "Toolchain technical
notes". Integrated and scaled back the old "Why we use static linking" section.
Closes Bug 658.

October 4th, 2003 [alex]: Minor rewordings and additions of markup here and
there.

October 4th, 2003 [greg]: Chapter 5 - Binutils Pass 1: Added extra LDFLAGS
to ensure static rebuild of 1d.

October 2nd, 2003 [greg]: Chapter 6: Reinstated INSTAL L=/tools/bin/install
for linker adjustment command due to issues on hosts where a ginstall symlink
exists. Thisrenders the "install" symlinks redundant, so removed those too.

October 2nd, 2003 [greg]: Chapter 6 - Shadow: Enabled MD5 passwords.
Closes Bug 600.

September 27th, 2003 [greg]: Chapter 5 - Expect: Tweaked install so that
redundant scripts are not installed. Chapter 6 - Creating essential symlinks:
Removed redundant links. Chapter 6 - man: Removed PATH, closes Bug 574.

September 27th, 2003 [greg]: Added Tcl, Expect and DgaGnu items to
Appendix A. Closes Bug 661.

September 26th, 2003 [jeremy]: Added new workaround for the devpts
problems.

September 24th, 2003 [greg]: Various changes across the board addressing
Bug 675.

September 24th, 2003 [alex]: Appendix A - Changed the style of the short
descriptions, and the content of most of them too.

September 22nd, 2003 [greg]: Chapter 8 - Creating the /etc/fstab file: Made
mounting devpts the default.

September 22nd, 2003 [jeremy]: Added Net-tools patch to fix mii-tool
compilation.

September 22nd, 2003 [jwraober]: Chapter 5 - Updated the Why Static page to
more accurately represent the difference between statically and dynamically
linked binaries. Thanks to lan Molton for pointing this out. Fixes Bug 602.

September 22nd, 2003 [jeremy]: Removed the make command from DejaGnu,
since it performs nothing.

23

24

September 22nd, 2003 [jeremy]: Removed the -k from Tcl's make check, since
it's not expected to have failures anymore

September 22nd, 2003 [jeremy]: Changed the reference to the man hint to a
pointer to BLFS.

September 22nd, 2003 [jeremy]: Added a note to remember to mount devpts if
you exit and re-enter chroot.

September 22nd, 2003 [jeremy]: Removed make check from Patch and
Diffutils, since these tests perform no actions.

September 22nd, 2003 [greg]: Chapter 5 - Setting up the environment: Added
unset CC CXX CPPLD_LIBRARY_PATH LD_PRELOAD to .bash_profile
to stop accidental build breakage.

September 20th, 2003 [greg]: Chapter 5 - GCC Pass 2: Updated to gec-3.3.1-
specs-2.patch. Ncurses: added --enable-overwrite and description.

September 19th, 2003 [jeremy]: Corrected bash tags for proper use of the +h
flag to bash.

September 19th, 2003 [jwrober]: Various updates to the acknowledgments
page.

September 18th, 2003 [jeremy]: Chapter 5 - GCC Pass 2: Added some extra
comments regarding the 3 tarballs to unpack.

September 17th, 2003 [greg]: Chapter 6 - GCC-2.95.3: Added rationale notes.

September 17th, 2003 [jwrober]: Updated the acknowledgments page to match
the website.

September 17th, 2003 [jeremy]: Upgraded Fileto 4.04.

September 17th, 2003 [jeremy]: Chapter 6 - Changed 2 of the occurrences of
exec bash --login to include the +h directive.

September 17th, 2003 [greg]: Chapters 5 and 6 - Locking in Glibc and Re-
adjusting the toolchain: Do "make -C |d install" instead of "make -C |d install-
data-local" to install a whole new linker instead of just the new Idscripts.

September 17th, 2003 [alex]: Normalized the spelling of 'Tcl' and 'DejaGnu,
following their own documentation.

September 17th, 2003 [alex]: Properly alphabetized the dependencies.

September 16th, 2003 [alex]: Finally updated the dependencies for the new
Coretils.

September 16th, 2003 [greg]: Chapters 5 and 6 - Locking in Glibc and Re-
adjusting the toolchain: Added sanity checks.

September 16th, 2003 [greg]: Chapters 5 and 6 - Binutils, GCC, and Glibc:
Added notes on the test suites.

September 15th, 2003 [alex]: Corrected several typos and some
inconsistencies.

September 14th, 2003 [greg]: Chapter 6 - Revised chroot command: Removed
no longer needed set +h.

September 14th, 2003 [alex]: Fixed some typos, and added some markup.
Dropped the removal of program files from the Stripping section in Chapter 5.

September 14th, 2003 [greg]: Chapter 6 - Create essential symlinks: Add
symlink /usr/lib/libgcc_s.s0.1 to alow GCC abi_check to run. Future NPTL
needs this as well.

September 13th, 2003 [jwrober]: Added PLFS hint text to the page in Chapter
6 for creating passwd and group: bug 596.

September 13th, 2003 [jwrober]: Updated the "How things are going to be
done" page to include more of the PLFS hint's text.

September 13th, 2003 [jwrober]: Preface - Merged whoread and whonotread
into a single audience page.

September 13th, 2003 [greg]: Chapter 2 - Added new section about the test
suites.

September 12th, 2003 [jeremy]: Chapter 5 - Ncurses: Added description for
the --without-ada configure switch.

September 12th, 2003 [jeremy]: Chapter 5 - Gawk: Added the test suite

September 12th, 2003 [jeremy]: Chapter 5 - Grep: Added descriptions of
configure switches courtesy of Anderson Lizardo

September 12th, 2003 [gerard]: Removed /usr/lib/locale directory creation - it's
created during Chapter 6 - Glibc whereit's more relevant.

September 11th, 2003 [jwrober]: Chapter 5 - Fixed GCC Pass 2 specs patch
text to be more vague, but in actuality more accurate - provided by Anderson
Lizardo.

September 11th, 2003 [jwrober]: Chapter 5 - Grammar fix in Tcl install
directions provided by Anderson Lizardo.

September 11th, 2003 [jwrober]: Chapter 5 - Small textual changein the
locking in Glibc page for /lib/Id.so0.1 provided by Anderson Lizardo.

September 11th, 2003 [jeremy]: Added bootloader setup to Chapter 8, after the
addition of Grub to the book.

September 11th, 2003 [gerard]: Removed Bin86 and L1LO and replaced it with
Grub.

September 11th, 2003 [jeremy]: Dropped non-toolchain tests to optional
actions. Added a note to use the Wiki for failed tests.

25

26

September 11th, 2003 [jeremy]: Added Bison patch, backported from CVS, to
fix pwlib compilation problems

September 11th, 2003 [jeremy]: Added Greg's patch to GCC to suppress the
installation of libiberty, and changed Binutils to allow its libiberty to stay.

September 11th, 2003 [jeremy]: Added caution tags around the reminder to not
delete the Binutils source and build directories in Chapter 5.

September 11th, 2003 [jeremy]: Added new perl-libc-3 patch from Anderson
Lizardo

September 9th, 2003 [jwrober]: Fixed the Findutils package download link on
the packages page closing bug 578.

September 9th, 2003 [jeremy]: Chapter 6 - GCC 2.95.3: Removed compilation
of C++, added Zack's return-type patch.

September 9th, 2003 [jeremy]: Chapter 6 - Coreutils: Added coreutils-5.0-
hostname-2.patch, which suppresses the build of the hostname binary, and also
suppresses its check.

September 9th, 2003 [jeremy]: Added some notes regarding failed tests to
Glibc and DegjaGnu.

September 9th, 2003 [jeremy]: Glibc - Added commands to both Chapter 5 and
6 to include minimum locales necessary for checks.

September 9th, 2003 [jeremy]: Chapter 6 - Removed Zlib's munging of
CFLAGS in favor of anoteto add -fPIC.

September 8th, 2003 [matt]: Chapter 5 - Fixed the rm command that deletes
unneeded documentation from /tools/share.

September 6th, 2003 [matt]: Chapter 6 - Removed a reference to "the static"
directory in theintro.

September 6th, 2003 [jeremy]: Chapter 4 - Updated download locations for
some packages.

September 5th, 2003 [jeremy]: Chapter 5 - GCC Pass 2: Corrected the make
check error explanation

September 5th, 2003 [jeremy]: Chapter 6 - Makedev: Changed the default
device creation to generic-nopty, because we now use devpts by default.

September 5th, 2003 [jeremy]: Chapter 6 - GCC: Corrected wording to reflect
theremoval of the /usr/lib/cpp symlink.

September 5th, 2003 [jeremy]: Corrected perl libc patch to -2, changing the old
[stagel structure to /tools

September 5th, 2003 [matt]: Chapter 6 - Updated GCC specs patch and
upgraded to man-1.5m2

September 4th, 2003 [jeremy]: Chapter 6 - Creating Directories: Eliminated
the creation of /usr/tmp - Closes bug 176.

September 4th, 2003 [jeremy]: Chapter 6 - Mounting Proc: Added mounting
the devpts filesystem into chroot here. Closes bug 533.

September 4th, 2003 [jeremy]: Chapter 6 - Mounting Proc: Added a warning at
the end regarding checking that proc is still mounted if you stop and restart the
Ifs process.

September 4th, 2003 [jeremy]: Chapter 6 - Gzip: Altered text to better explain
the reason behind the sed command used in the gzip installation. Closes bug
551.

September 4th, 2003 [jeremy]: Chapter 4 - Downloading patches: Added a
note regarding Tushar's patches project, and a link to the patches home page.

September 3rd, 2003 [matt]: Fixed issue with Util-linux not utilizing headers
and libraries installed in /stagel.

September 3rd, 2003 [matt]: Removed "rm /bin/pwd" instruction from Chapter
6 kernel-headers installation as the link is still required by Glibc's installation.

September 2nd, 2003 [alex]: Adjusted all the SBUs from the values posted by
Jeremy.

September 2nd, 2003 [alex]: Finally got around to renaming /stagel to /tools.
September 2nd, 2003 [alex]: Merged several of the main book structurefiles.

September 2nd, 2003 [alex]: Alphabetized download lists, added noteto Tcl
instructions.

September 2nd, 2003 [alex]: Reworded Organization, $LFS and SBUs
sections.

September 1, 2003 [jeremy] - Chapter 6 - Groff - Added note about choice of
A4 or letter for the PAGE variable.

September 1, 2003 [jeremy] - Added in shadow newgrp patch from Greg
Schafer

August 31, 2003 [jeremy] - Chapter 6 - Inetutils - added the --disable-whois
and --disable-servers flags

August 31, 2003 [jeremy] - Added in Greg's hew instructions for GCC 3.3.1
with respect to the fixincludes process. Also added extra verbiage to the
Locking in Glibc and GCC Pass 2 pages on the fixincludes process.

August 31st, 2003 [alex]: Reworded some paragraphs, added missing markup,
and rearranged the changel og.

August 31st, 2003 [alex]: Wrapped the 'Last checked' lines in parentheses.
Several other small retouches.

August 30, 2003 [jeremy] - Updated fix-includes patch to GCC 3.3.1

27

28

August 29, 2003 [jeremy] - Glibc - updated instructions with the sscanf patch
from patches.

August 29, 2003 [jeremy] - Updated GCC to version 3.3.1, including fixes
based on Zack's mini-hint for GCC 3.3, and patches from his docs.

August 29th, 2003 [alex]: Removed obsol ete Netkit-base, Fileutils, Sh-utils,
and Textutilsfiles,

August 29th, 2003 [alex]: Added some missing markup, changed a few /static's
to /stagel's.

August 29th, 2003 [alex]: Chapter 06 - Added all the missing text lines before
the make checks, and reworded other lines.

August 28, 2003 [matt] - Updated packages to linux-2.4.22, man-pages-1.60,
expect-5.39.0, findutils-4.1.20 and tcl-8.4.4

August 28, 2003 [jeremy] - New bash-2.05b-2.patch file to include the 7
patches from ftp.gnu.org

August 28th, 2003 [alex]: Chapter 06 - Re-adjusting toolchain: Added a
forgotten backslash.

August 28th, 2003 [alex]: Fixed afew typos and added some missing markup.

August 28th, 2003 [alex]: Chapter 06 - Binutils and GCC: Integrated text from
the pure-Ifs hint.

August 27, 2003 [jeremy] - Chapter 06 - Inetutils: Added --sysconfdir=/etc --
localstatedir=/var and moved the ping binary from /usr/bin to /bin

August 27th, 2003 [alex]: Chapter 06 - Glibc: Integrated text from the pure-Ifs
hint.

August 26, 2003 [jeremy] - Chapter 07 - Creating /etc/hosts: Changed
www.mydomain.org to <value of HOSTNAM E>.mydomain.org

August 26th, 2003 [alex]: Chapter 06 & 08 - Moved the installation of the
kernel manpages from chapter 6 to 8.

August 26, 2003 [jeremy] - Chapter 04 - Mounting the LFS partition: Added
text regarding mounting with too restrictive permissions.

August 26, 2003 [jeremy] - Chapter 06 - Creating Directories: Added the
creation of the /dev/shm directory.

August 26, 2003 [jeremy] - Chapter 08 - Creating fstab: Added the mount of
tmpfs filesystem to /dev/shm.

August 26, 2003 [jeremy] - Chapter 08 - Kernel Installation: Added a reminder
to compile tmpfs support into the kernel.

August 25th, 2003 [alex]: Chapter 06 - Rewrote the installation text of Shadow
and Util-Linux while correcting some typos.

August 25th, 2003 [alex]: Chapter 05 & 06 - Made the "L ocking in" and "Re-
adjusting” look similar.

August 24th, 2003 [alex]: Chapter 04 - Merged the many littlefiles into one
file. Gave packages and patches a separate page.

August 17th, 2003 [alex]: Chapter 05 - From Bash to Perl: put text in between
commands. Added a section on stripping unneeded symbols to decrease the
size of thetools.

August 16th, 2003 [alex]: Chapter 05 - From Make to Texinfo: put text in
between commands.

August 11th, 2003 [alex]: Chapter 05 - From Binutils Pass 1 to Findutils:
several small textual adjustments. For the second passes not giving the
contents and dependencies.

August 11th, 2003 [alex]: Chapter 04 - Listed separate core, g++, and test suite
tarballs for GCC.

August 11th, 2003 [alex]: Chapter 04 - Suppressed the mention of a wget
Sscript.

August 9th, 2003 [alex]: Chapter 05 - Binutils Pass 2 and GCC Pass 2:
integrated some text from the pure-Ifs hint.

August 8th, 2003 [alex]: Chapter 05 - Tcl, Expect, and DejaGnu: added some
text.

August 6th, 2003 [gerard]: Applied Alex Groenewoud's patch that adds
Appendix B, providing alist of all installed programs and libraries plus
references to the installation pages.

July 30th, 2003 [gerard]: Chapter 06 - Vim: Changed the way the global vimrc
and gvimrc locations are defined.

July 30th, 2003 [gerard]: Chapter 05 - Binutils Pass 2: removed the lib patch,
it's no longer needed with the binutils-2.14 upgrade.

July 30th, 2003 [gerard]: Chapter 05 Binutils Pass 1: Added make configure-
host.

July 30th, 2003 [gerard]: Upgraded to binutils-2.14, linux-2.4.21, expect-
5.38.4, gawk-3.1.3, texinfo-4.6, util-linux-2.12, man-pages-1.58, Ifs-utils-0.3,
vim-6.2, gettext-0.12.1, automake-1.7.6, file-4.03, e2fsprogs-1.34, procps-
3.1.11, psmisc-21.3

June 3rd, 2003 [gerard]: Chapter 06 - Gawk: removed the removal of
/bin/awk. This symlink isn't created anymore.

May 21st, 2003 [gerard]: Chapter 06 - GCC-2.95.3: Added /opt/gce-2.95.3/lib
to the /etc/Id.so.conf file so the libraries can be found during run-time.

May 21st, 2003 [gerard]: Chapter 05 - Gzip: Simplified commands.

29

30

May 21st, 2003 [gerard]: Chapter 05 - Bzip2: Simplified commands.

May 21st, 2003 [gerard]: Chapter 06 - Shadow: Added the grpconv command
to complement the enabling of all shadowed passwords.

May 21st, 2003 [winkie]: Chapter 06 - Creating Files: All those In commands
can be made into a few long In commands.

May 21st, 2003 [winkie]: Chapter 05 - Installing Glibc: Create an |d.so.conf
file before building Glibc, to prevent an (harmless) error.

May 21st, 2003 [winkie]: Chapter 06 - Installing Glibc: Don't bother doing the
‘exec /stagel/bin/bash’ stuff, it doesn't do anything now that we use PLFS.

May 21st, 2003 [winki€]: Chapter 05 & 06 - Installing Coreutils: Only test the
non-root stuff in Chapter 05, but test everything in Chapter 06.

May 21st, 2003 [winkie]: Chapter 05 - Installing Expect: Don't bother passing
anything more than --prefix=/stagel. None of it is needed.

May 16th, 2003 [gerard]: Chapter 06: Net-tools: Changed make install to
make update.

May 15th, 2003 [timothy]: Chapter 05: Installing Patch: Added CPPFLAGS=-
D_GNU_SOURCE before ./configure to fix patch build on PPC.

May 13th, 2003 [gerard]: Chapter 06: When we exec /path/to/bash --login,
also run set +h to keep the hashing option turned off. Fixes bug #531

May 13th, 2003 [gerard]: Chapter 06 - Basic Network: Changed the single
quotes to double quotes in the echo command. Without it, $(hostname) won't
expand which defeats the sole purpose of this command - to make Perl's
hostname check work.

May 13th, 2003 [winki€]: Removed all occurrences & & . Updated bug syntax.
Added "make check/test" where necessary in Chapter 6.

May 13th, 2003 [winkie]: Chapter 06: Applied "Changing ownership" patch to
polish the text. Closes bug #511.

May 13th, 2003 [winki€]: Chapter 06: Applied "Configuring system
components" patch to polish the text. Closes bug #510.

May 13th, 2003 [gerard]: Chapter 06: Removed Tcl, Expect and DejaGnu.
Nothing uses this once past GCC in chapter 6. The versionsin /stagel/bin do
thejob just fine.

May 13th, 2003 [winki€]: Chapter 06 - Installing Shadow: Touching the

{usr/bin/passwd file before installation. Not doing so results in Shadow
thinking passwd will bein /bin/passwd.

May 13th, 2003 [winki€]: Chapter 06 - Installing Procps: Remove the
/lib/libproc.so symlink. No package outside of Procpsitself uses thislibrary,
and none should.

May 13th, 2003 [winki€]: Chapter 06 - Installing Net-tools: Run "make
config" before doing make. Fixes bugs #462 and #497.

May 13th, 2003 [gerard]: Chapter 06 - Ncurses: Added the vsscanf patch.

May 12th, 2003 [gerard]: Chapter 05 - Gzip: Removed make check. It doesn't
do anything.

May 12th, 2003 [winki€]: Chapter 05 - Installing Texinfo: Don't install the
texmf data. It's not used by anything.

May 12th, 2003 [winkig]: Chapter 05 & 06 - Installing Ncurses: In Chapter 6,
symlink creation has been updated to include libcurses.*, and libncurses++.a
has its properties changed to 644. Chapter 5 doesn't need any libcurses.* so
those are removed.

May 12th, 2003 [gerard]: Chapter 06 - Basic Network: Added $(hostname) to
/etc/hosts, without it Perl's hostname test doesn't pass.

May 12th, 2003 [gerard]: Chapter 06 - Installing GCC: Don't try to remove
/usr/include/libiberty.h. It isn't installed in the first place.

May 12th, 2003 [winki€]: Upgraded to findutils-4.1.7, gzip-1.3.5, and tar-
1.13.25.

May 12th, 2003 [winki€]: Chapter 05 - Installing Perl: Added extra commands
to build certain modules into Perl. This is to accommodate the Coreutils "make
check". Partially fixes bug #528.

May 12th, 2003 [winki€]: Chapter 05 - Installing Gzip: Nothing in Chapter 6
checks for or uses the uncompress command, therefore we shouldn't createit.
May 12th, 2003 [winki€]: Chapter 05 - Installing Bzip2: Running "make"
implies "make check", therefore thereis no reason whatsoever for usto run it
manually.

May 12th, 2003 [winki€]: Chapter 05 - Installing Lfs-Utils: Removed. The
only package that checks for mktemp beforeit isinstalled is GCC, and that's
only for gccbug.

May 11th, 2003 [gerard]: Chapter 06 - GCC-2.95.3: Added --enable-
threads=posix as well to complete the C++ addition.

May 11th, 2003 [gerard]: Chapter 06 - GCC-2.95.3: Added --enable-
languages=c,c++ to fix that GCC's version bug with regards to -Wreturn-type.
Fixes bug #525

May 11th, 2003 [gerard]: Chapter 05 - Bash: Removed the --without-bash-
malloc configure option.

May 11th, 2003 [gerard]: Updated to gcc-3.2.3-specs-4.patch.

May 11th, 2003 [winki€]: Chapter 06 - Setting up Basic Networking: Added
section. Create a basic /etc/hosts files, and create /etc/services and
/etc/protocols from IANA. Fixes bugs #359 & #515.

31

32

May 11th, 2003 [winki€]: Upgrading to Ifs-utils-0.2.2. This adds two files
needed for proper networking configuration.

May 11th, 2003 [winki€]: Removed Netkit-base 0.17. Added Inetutils 1.4.2.
Fixes bug #490.

May 11th, 2003 [winki€]: Added Ifs-utils-0.2.1. Fixes bug #493.

May 11th, 2003 [winki€]: Chapter 06 - Installing Ncurses: Fix up the symlinks
so that they follow suit of other library symlinks. No more weirdness here.

May 11th, 2003 [winki€]: Chapter 06 - Installing Procps: Removed X SCPT=""
cruft and its corresponding paragraph. This stuff isn't needed anymore.

May 11th, 2003 [winki€]: Chapter 06 - Installing Ncurses: Pass --without-
debug to the configure script. It seems to have gotten lost at some point.

May 11th, 2003 [timothy]: Chapter 5 & 6 - Installing Bzip2, Installing Zlib:
Modified build commands per bug #524.

May 11th, 2003 [winki€]: Chapter 06 - Installing Glibc: Install the linuxthreads
man pages, too. This got lost somewhere.

May 11th, 2003 [winki€]: Chapter 06 - Installing Grep: Added --with-
included-regex to prevent Grep from using Glibc's somewhat bugged regex.

May 11th, 2003 [winkig]: Chapter 06 - Installing Coreutils: Fix some
functionality of the uname command with a patch.

May 11th, 2003 [winki€]: Chapter 06 - Installing Net-tools: Just do regular old
"make install" instead of "make update". The latter works fine now.

May 11th, 2003 [winki€]: Chapter 06 - Installing GCC: After installation,
remove /usr/includée/libiberty.h. It is not used outside of the GCC build tree.

May 11th, 2003 [winkie€]: Upgraded to Bash 2.05b and added its patch.

May 11th, 2003 [winki€]: Chapter 06 - Installing Zlib: Apply a patch to fix the
buffer overflow in gzprintf().

May 11th, 2003 [winki€]: Chapter 06 - Configuring system components:
Moved the creation of the btmp, wtmp, lastlog and utmp to just before
Shadow, so that they are detected at their proper locations.

May 10th, 2003 [winkig]: Chapter 06 - Installing Automake: Run "make"
beforeinstalling. Thisis needed now with the newer releases of Automake.

May 10th, 2003 [winki€]: Chapter 06 - Installing Vim: Removed the patch. It
hasn't been required since GCC 3.2.1.

May 10th, 2003 [winki€]: Chapter 06 - Creating the mtab file: Removed.
Mounting /proc has the side effect of creating /etc/mtab for us.

May 10th, 2003 [winki€]: Chapter 06 - Installing Make: Removed
modification of /usr/bin/makefile. It is no longer mistakenly installed with
strange ownership or permissions.

May 10th, 2003 [winki€]: Chapter 06 - Installing Glibc: Made /etc/localtime a
fileinstead of a symlink. The symlink method breaks on systems where /usr is
a separate partition.

May 10th, 2003 [winki€]: Chapter 06 - Installing E2fsprogs: Removed install-
info commands for e2fsprogs. The "make install" target handles this for us.

May 10th, 2003 [gerard]: Removed all CFLAGS and LDFLAGS variables
where they are not essential (so, not including static binutils, GCC and
compiling Zlib with -fPIC).

May 10th, 2003 [gerard]: Chapter 05 - Binutils (passl, pass2), locking in Glibc
and adjusting toolchain: Changed tooldir to /stagel (likewise we use
tooldir=/usr in Chapter 6).

May 10th, 2003 [gerard]: Chapter 05 - Kernel headers: Removed the usage of
cp -H because there are distributions out there that do not know about the -H
option.

May 10th, 2003 [gerard]: New gcc-3.2.3-specs-3.patch.

May 10th, 2003 [gerard]: Chapter 06 - Adjusting toolchain: Made it more
architecture-independent.

May 10th, 2003 [gerard]: Chapter 05 - Locking in Glibc: Made it more
architecture-independent.

May 7th, 2003 [gerard]: Removed GCC No Debug patches. No longer assume
gcc-core and gee-g++ packages are downloaded, so added appropriate --
enable-languages options.

May 7th, 2003 [gerard]: Removed Chapter 6 - Glibc-Pass2. It's not needed
anymore with the pure-Ifs integration.

May 7th, 2003 [gerard]: Downgraded to flex-2.5.4a again. Newer versions just
don't work properly.

May 5th, 2003 [gerard]: Removed zlib installation from chapter 5 (itsinclusion
was a mistake).

May 5th, 2003 [gerard]: Various bug fixes that wereintroduced during the
pure-Ifs integration.

May 2nd, 2003 [gerard]: Upgraded to: automake-1.7.4, e2fsprogs-1.33, file-
4.02, flex-2.5.31, gawk-3.1.2, gcc-3.2.3, glibc-2.3.2, grep-2.5.1, groff-1.19,
less-381, libtool-1.5, man-1.5I, man-pages-1.56, modutils-2.4.25, procps-3.1.8,
sed-4.0.7, sysvinit-2.85, texinfo-4.5, util-linux-2.11z

May 2nd, 2003 [gerard]: Removed fileutils-4.1, sh-utils-2.0, textutils-2.1 (all
replaced with coreutils-5.0).

May 2nd, 2003 [gerard]: Added binutils-2.13.2-libc.patch, coreutils-5.0,
dejagnu-1.4.3, expect-5.38, gawk-3.1.2, gcc-2.95.3, tcl-8.4.2

33

e May 2nd, 2003 [gerard] - Integrated new installation method from the Pure
LFS hint written by Greg Schafer and Ryan Oliver.

Release of version 4.1 on April 28th, 2003.

Resources

FAQ

If during the building of your LFS system you encounter any errors, or have any
questions, or think you found a typo in the book, then please first consult the FAQ
(Frequently Asked Questions) at http://www. linuxfromscratch.org/fag/.

IRC

Several members of the LFS community offer assistance on our community IRC
server. Before you utilize this mode of support, we ask that you've at least checked the
LFS FAQ and the mailing list archives for the answer to your question. Y ou can find
the IRC server at irc.linuxfromscratch.org port 6667. The support channel is named
#L FS-support.

Mailing lists

The linuxfromscratch.org server is hosting a number of mailing lists used for the
development of the LFS project. Theselists include, among others, the main
development and support lists.

For information on which lists are available, how to subscribe to them, their archive
locations, and so on, visit http://ww. linuxfromscratch.org/mail_html.

News server

All the mailing lists hosted at linuxfromscratch.org are also accessible viathe NNTP
server. All messages posted to a mailing list will be copied to the correspondent
newsgroup, and vice versa.

The news server can be reached at news.linuxfromscratch.org.

Mirror sites

The LFS project has a number of mirrors set up world-wide to make accessing the
website and downloading the required packages more convenient. Please visit the
website at http://www. linuxfromscratch.org/ for alist of current mirrors.

Contact information
Please direct your all your questions and comments to one of the LFS mailing lists (see

above).

But if you need to reach Gerard Beekmans personally, send an email to
gerard@linuxfromscratch.org.

Acknowledgments

We would like to thank the following people and organizations for their contributions
to the Linux From Scratch Project.

Current Project Team Members

Gerard Beekmans <gerard@linuxfromscratch.org> — Linux-From-Scratch
initiator, LFS Project organizer.

Matthew Burgess <matthew@linuxfromscratch.org> — LFS General Package
maintainer, LFS Book editor.

Craig Colton <meerkats@bellsouth.net> — LFS, ALFS, BLFS and Hints
Project logo creator.

Jeroen Coumans <jeroen@linuxfromscratch.org> — Website developer, FAQ
maintainer.

Bruce Dubbs <bdubbs@linuxfromscratch.org> — LFS Quality Assurance
Team leader, BLFS Book editor.

Alex Groenewoud <alex@linuxfromscratch.org> — LFS Book editor.

Mark Hymers <markh@linuxfromscratch.org> — CVS maintainer, BLFS
Book creator, former LFS Book editor.

James Iwanek <iwanek@linuxfromscratch.org> — System Administration
Team member.

Nicholas L eippe <nicholas@linuxfromscratch.org> — Wiki maintainer.

Anderson Lizardo <lizardo@Ilinuxfromscratch.org> — Website backend
scripts creator and maintainer.

Bill Maltby <bill@Ilinuxfromscratch.org> — LFS Project organizer.

Scot Mc Pherson <scot@linuxfromscratch.org> — LFS NNTP gateway
maintainer.

Ryan Oliver <ryan@linuxfromscratch.org> — Testing Team |leader, co-creator
of PLFS.

James Robertson <jwrober @linuxfromscratch.org> — Bugzilla maintainer,
Wiki developer, LFS Book editor.

35

e Greg Schafer <greg@linuxfromscratch.org> — Toolchain maintainer, LFS
Book editor, co-creator of PLFS.

e Tushar Teredesai <tushar@linuxfromscratch.org> — BLFS Book editor, Hints
and Patches Projects maintainer.

e Jeremy Utley <jeremy@linuxfromscratch.org> — LFS Book editor, Bugzilla
maintainer.

e Countless ather people on the various LFS and BLFS mailing lists who are
making this book happen by giving their suggestions, testing the book and
submitting bug reports, instructions and their experiences with installing
various packages.

Translators

e Manuel Canales Esparcia <macana@Ilfs-es.org> — Spanish LFS translation
project.

o Johan Lenglet <johan@linuxfromscratch.org> — French LFS trandation
project.

e Anderson Lizardo <lizardo@linuxfromscratch.org> — Portuguese LFS
translation project.

Mirror Maintainers
¢ Jason Andrade <jason@dstc.edu.au> — au.linuxfromscratch.org mirror.
o William Astle <lost@I-w.net> — ca.linuxfromscratch.org mirror.
o Bague <bague@cict.fr> — Ifs.cict.fr mirror.
e Stephan Brendel <stevie@stevie?0.de> — Ifs.netservice-neuss.de mirror.

e lan Chilton <ian@ichilton.co.uk> — us.linuxfromscratch.org,
linuxfromscratch.co.uk mirrors.

o Fredrik Danerklint <fredan-lfs@fredan.org> — se.linuxfromscratch.org
mirror.

o David D.W. Downey <pgpkeys@aeternamtech.com> —
Ifs.learnbyexample.com mirror.

e Eduardo B. Fonseca <ebf @aedsolucoes.com.br> — br.linuxfromscratch.org
mirror.

e Hagen Herrschaft <hrx@hrxnet.de> — de.linuxfromscratch.org mirror.
o Tim Jackson <tim@idge.net> — linuxfromscratch.idge.net mirror.

e BarnaKoczka <barna@siker.hu> — hu.linuxfromscratch.org mirror.

e Roel Neefs— linuxfromscratch.rave.org mirror.

36

Simon Nicoll <sime@dot-sime.com> — uk.linuxfromscratch.org mirror.
Ervin S. Odisho <ervin@activalink.net> — Ifs.activalink.net mirror.

Guido Passet <guido@primerelay.net> — nl.linuxfromscratch.org mirror.
Mikhail Pastukhov <miha@xuy.biz> — Ifs.130th.net mirror.

Jeremy Polen <jpolen@rackspace.com> — us2.linuxfromscratch.org mirror.
UK Mirror Service— linuxfromscratch.mirror.co.uk mirror.

Thomas Skyt <thomas@sofagang.dk> — dk.linuxfromscratch.org mirror.

Antonin Sprinzl <Antonin.Sprinzl @tuwien.ac.at> — at.linuxfromscratch.org
mirror.

Dag Stenstad <dag@stenstad.net> for providing no.linuxfromscratch.org and
lan Chilton for running it.

Parisian sysadmins <archive@doc.cs.univ-paris8.fr> —
www2.fr.linuxfromscratch.org mirror.

Jesse Tie-Ten-Quee <highos@linuxfromscratch.org> for providing and
running the linuxfromscratch.org server.

Alexander Vein <velin@zadnik.org> — bg.linuxfromscratch.org mirror.
Martin Voss <Martin.Voss@ada.de> — Ifs.linux-matrix.net mirror.

Pui Y ong <pyng@spam.averse.net> — sg.linuxfromscratch.org mirror.

Donators

Dean Benson <dean@Vvipersoft.co.uk> for several monetary contributions.

DREAMWYVR.COM for their past sponsorship of donating various resources
to the LFS and related sub projects.

Hagen Herrschaft <hrx@hrxnet.de> for donating a 2.2 GHz P4 system, now
running under the name of lorien.

O'Reilly for donating books on SQL and PHP.

VA Software who, on behalf of Linux.com, donated a VA Linux 420 (former
StartX SP2) workstation.

Mark Stone for donating shadowfax, the first linuxfromscratch.org server, a
750 MHz P3 with 512 MB RAM and two 9 GB SCSI drives. When the server
moved it was renamed to belgarath.

Jesse Tie-Ten-Quee <highos@linuxfromscratch.org> for donating a Y amaha
CDRW 8824E CD-writer.

Countless other people on the various LFS mailing lists who are making this
book better by giving their suggestions, submitting bug reports, and throwing
in their criticism.

37

Former Team Members and Contributors

38

Timothy Bauscher <timothy@linuxfromscratch.org> — LFS Book editor,
Hints Project maintainer.

Robert Briggs for originally donating the linuxfromscratch.org and
[inuxfromscratch.com domain names.

lan Chilton <ian@ichilton.co.uk> for maintaining the Hints project.
Marc Heerdink <gimli @linuxfromscratch.org> — LFS Book editor.
Seth W. Klein <sklein@linuxfromscratch.org> — LFS FAQ creator.
Garrett LeSage <garrett@linuxart.com> — Original LFS banner creator.
Simon Perreault <nomis80@videotron.ca> — Hints Project maintainer.

Geert Podls <Geert.Poels@skynet.be> — Original BLFS banner creator; based
on the LFS banner by Garrett LeSage.

Frank Skettino <bkenoah@oswd.org> for the initial design of the old website
— have alook at http://www.oswd.org/.

Jesse Tie-Ten-Quee <highos@linuxfromscratch.org> for answering countless
guestions on IRC and having a great deal of patience.

Chapter 2
Important information

About $LFS

Please read the following paragraphs carefully. Throughout this book the variable LFS
will be used frequently. $LFS must at all times be replaced with the directory where
the partition that contains the LFS system is mounted. How to create and where to
mount the partition will be explained in full detail in Chapter 3. For the moment let's
assume that the LFS partition is mounted on /mnt/Ifs.

When you aretold to run a command like ./configure --prefix=$LFS/tools, you
actually haveto execute ./configure --prefix=/mnt/Ifs/tools.

It's important that this is done no matter whereit isread; beit in commands entered in
ashell, or inafile edited or created.

A possible solution is to set the environment variable LFS. This way $LFS can be
entered literally instead of replacing it with /mnt/Ifs. This is accomplished by running:

export LFS=/mnt/1fs

Now, if you aretold to run a command such as ./configure --prefix=$LFS/tools,
then you may typeit literally. Your shell will replace "$LFS" with "/mnt/Ifs" when it
processes the command line (that is, when you hit Enter after having typed the
command).

About SBUs

Most people would like to know beforehand how long it approximately takes to
compileand install each package. But "Linux from Scratch" is built on so many
different systems, it is not possible to give actual times that are anywhere near
accurate: the biggest package (Glibc) won't take more than twenty minutes on the
fastest systems, but will take something like three days on the slowest — no kidding.
So instead of giving actual times, we've come up with the idea of using the Static
Binutils Unit (abbreviated to SBU).

It works like this: the first package you compile in this book is the statically linked
Binutilsin Chapter 5, and the time it takes to compile this package is what we call the
"Static Binutils Unit" or "SBU". All other compile times will be expressed relative to
thistime.

For example, thetime it takes to build the static version of GCC is 4.4 SBUs. This
means that if on your system it took 10 minutes to compile and install the static
Binutils, then you know it will take approximately 45 minutes to build the static GCC.
Fortunately, most build times are much shorter than the one of Binutils.

39

Note that if the system compiler on your host is GCC-2 based, the SBUs listed may
end up being somewhat understated. Thisis because the SBU is based on the very first
package, compiled with the old GCC, while the rest of the system is compiled with the
newer GCC-3.3.1 which is known to be approximately 30% slower.

Also note that SBUs don't work well for SMP-based machines. But if you're so lucky
as to have multiple processors, chances are that your system is so fast that you won't
mind.

About the test suites

Most packages provide a test suite. Running the test suite for a newly built packageis
generally a good idea as it can provide a nice sanity check that everything compiled
correctly. A test suite that passes its set of checks usually proves that the package is
functioning mostly as the developer intended. It does not, however, guarantee that the
packageis totally bug free.

Some test suites are more important than others. For example, the test suites for the
core toolchain packages — GCC, Binutils, and Glibc (the C library) — are of the
utmost importance due to their central role in a properly functioning system. But be
warned, the test suites for GCC and Glibc can take a very long period of time to
complete, especially on slower hardware.

As you progress through the book and encounter the build commands to run the
various test suites, well guide you on therelative importance of thetest suitein
question so that you can decide for yourself whether to runiit or not.

F A common problem when running the test suites for Binutils
and GCC is running out of pseudo terminals (PTY's for
short). The symptom is an unusually high number of failing
tests. This can happen for any number of reasons. Most likely
is that the host system doesn't have the devpts file system set
up correctly. Well discuss thisin more detail later onin
Chapter 5.

How to ask for help

If you encounter a problem while using this book, and your problemis not listed in the
FAQ (http://www.linuxfromscratch.org/faq), you will find that most of the people
on Internet Relay Chat (IRC) and on the mailing lists are willing to help you. An
overview of the LFS mailing lists can be found in Chapter 1 - Mailing lists. To assist
us in diagnosing and solving your problem, include as much relevant information as
possible in your request for help.

40

Things to mention

Apart from a brief explanation of the problem you're having, the essential things to
includein your request are:

o theversion of the book you are using (being 5.0),

o thehost distribution and version you are using to create LFS from,
e the package or section giving you problems,

e theexact error message or symptom you are receiving,

o whether you have deviated from the book at all.

(Note that saying that you've deviated from the book doesn't mean that we won't help
you. After all, LFSis about choice. It'll just help us to see other possible causes of your

problem.)

Configure problems
When something goes wrong during the stage where the configure script is run, look

through the config. log file. This file may contain errors encountered during configure
which weren't printed to the screen. Include those relevant lines if you decide to ask for

help.

Compile problems

To hdp usfind the cause of the problem, both screen output and the contents of
various files are useful. The screen output from both the ./configure script and the
make run can be useful. Don't blindly include the whole thing but on the other hand,
don't includetoo little. As an example, here is some screen output from make:

gcc -DALIASPATH=\"/mnt/Ifs/usr/share/locale: _\"
-DLOCALEDIR=\"/mnt/Ifs/usr/share/locale\" -DLIBDIR=\"/mnt/1fs/usr/lib\"
-DINCLUDEDIR=\"/mnt/Ifs/usr/include\" -DHAVE_CONFIG_H -1. -I.

-g -02 -c getoptl.c

gcc -g -02 -static -0 make ar.o arscan.o commands.o dir.o expand.o file.o
function.o getopt.o implicit.o job.o main.o misc.o read.o remake.o rule.o
signame.o variable.o vpath.o default.o remote-stub.o version.o optl.o
-lutil job.o: In function ~load_too_high":
/1fs/tmp/make-3.79.1/job.c:1565: undefined reference to “getloadavg”
collect2: 1d returned 1 exit status

make[2]: *** [make] Error 1

make[2]: Leaving directory ~/1fs/tmp/make-3.79.1"

make[1]: *** [all-recursive] Error 1

make[1]: Leaving directory ~/1fs/tmp/make-3.79.1"

make: *** [all-recursive-am] Error 2

41

In this case, many people just include the bottom section where it says:

make [2]: *** [make] Error 1

and onwards. Thisisn't enough for us to diagnose the problem becauseit only tells us
that something went wrong, not what went wrong. The whole section, asin the
example above, is what should be included to be helpful, because it includes the
command that was executed and the command's error message(s).

An excellent article on asking for help on the Internet in general has been written by
Eric S. Raymond. It is available online at http://catb.org/~esr/faqs/smart-
questions.html. Read and follow the hints in that document and you are much more
likely to get aresponse to start with and also to get the help you actually need.

Test suite problems

Many packages provide a test suite which, depending on the importance of the
package, we may encourage you to run. Sometimes packages will generate false or
expected failures. If you encounter these, you can check the LFS Wiki page at
http://wiki . linuxfromscratch.org/ to see whether we have already investigated and
noted them. If we already know about them, then usually thereis no need to be
concerned.

42

Part Il - Preparing for the build

43

Chapter 3
Preparing a new partition

Introduction

In this chapter the partition which will host the LFS system is prepared. We will create
the partition itself, make a file system on it, and mount it.

Creating a new partition

In order to build our new Linux system, we will need some space: an empty disk
partition. If you don't have a free partition, and no room on any of your hard disks to
make one, then you could build LFS on the same partition as the one on which your
current distribution isinstalled. This procedure is not recommended for your first LFS
install, but if you are short on disk space, and you fedl brave, take alook at the hint at
http://ww . linuxfromscratch.org/hints/downloads/files/1fs_next_to_existing-
_systems. txt.

For aminimal system you will need a partition of around 1.2 GB. Thisis enough to
store all the source tarballs and compile all the packages. But if you intend to use the
LFS system as your primary Linux system, you will probably want to install additional
software, and will need more space than this, probably around 2 or 3 GB.

Aswe almost never have enough RAM in our box, it isagood idea to use a small disk
partition as swap space — this space is used by the kernel to store seldom-used data to
make room in memory for more urgent stuff. The swap partition for your LFS system
can be the same one as for your host system, so you won't have to create another if
your host system already uses a swap partition.

Start adisk partitioning program such as cfdisk or fdisk with an argument naming the
hard disk upon which the new partition must be created — for example /dev/hda for
the primary IDE disk. Create a Linux native partition and a swap partition, if needed.
Please refer to the man pages of cfdisk or fdisk if you don't yet know how to use the
programs.

Remember the designation of your new partition — something like hda5. This book
will refer to it asthe LFS partition. If you (now) also have a swap partition, remember
its designation too. These names will later be needed for the /etc/fstab file.

Creating a file system on the new partition

Now that we have a blank partition, we can create a file system on it. Most widely used
in the Linux world is the second extended file system (ext2), but with the high-capacity
hard disks of today the so-called journaling file systems are becoming increasingly
popular. Here we will create an ext2 file system, but build instructions for other file

45

systems can be found at http://www. linuxfromscratch.org/blfs/view/stable/
postlfs/filesystems_html.

To create an ext2 file system on the LFS partition run the following:
mke2fs /dev/xxx
Replace xxx with the name of the LFS partition (something like hda5).

If you created a (new) swap partition you need to initialize it as a swap partition too
(also known as formatting, like you did above with mke2fs) by running:

mkswap /dev/yyy
Replace yyy with the name of the swap partition.

Mounting the new partition

Now that we've created a file system, we want to be able to access the partition. For
that, we need to mount it, and have to choose a mount point. In this book we assume
that the file system is mounted under /mnt/Ifs, but it doesn't matter what directory you
choose.

Choose a mount point and assign it to the LFS environment variable by running:
export LFS=/mnt/1fs
Now create the mount point and mount the LFS file system by running:

mkdir -p $LFS
mount /dev/xxx $LFS

Replace xxx with the designation of the LFS partition.

If you have decided to use multiple partitions for LFS (say onefor / and another for
/usr), mount them likethis:

mkdir -p $LFS

mount /dev/xxx $LFS
mkdir $LFS/usr

mount /dev/yyy $LFS/usr

Of course, replace xxx and yyy with the appropriate partition names.

Y ou should also ensure that this new partition is not mounted with permissions that are
too restrictive (such as the nosuid, nodev or noatime options). Y ou can run the mount
command without any parameters to see with what options the LFS partition is
mounted. If you see nosuid, nodev or noatime, you will need to remount it.

Now that we've made ourselves a place to work in, we're ready to download the
packages.

46

Chapter 4
The materials: packages and
patches

Introduction

Below isalist of packages you need to download for building a basic Linux system.
The listed version numbers correspond to versions of the software that are known to
work, and this book is based upon them. Unless you are an experienced LFS builder,
we highly recommend not to try out newer versions, as the build commands for one
version may not work with a newer version. Also, thereis often a good reason for not
using the latest version due to known problems that haven't been worked around yet.

All the URLSs, when possible, refer to the project's page at http://ww. freshmeat
.net/. The Freshmesat pages will give you easy access to the official download sites as
well as project websites, mailing lists, FAQs, changel ogs and more.

We can't guarantee that these download locations are always available. In case a
download location has changed since this book was published, please try to google for
the package. Should you remain unsuccessful with this, you can consult the book's
errata page at http://linuxfromscratch.org/1fs/print/ or, better yet, try one of the
alternative means of downloading listed on http://linuxfromscratch.org/Ifs/
packages.html.

You'll need to store all the downl oaded packages and patches somewherethat is
conveniently available throughout the entire build. Y ou'll also need a working
directory in which to unpack the sources and build them. A scheme that works well is
to use $LFS/sources as the place to store the tarballs and patches, and as aworking
directory. This way everything you need will be located on the LFS partition and
available during all stages of the building process.

So you may want to execute, as root, the following command before starting your
download session:

mkdir $LFS/sources

And make this directory writable (and sticky) for your normal user — as you won't do
the downloading as root, we guess:

chmod atwt $LFS/sources

47

All the packages
Download or otherwise obtain the following packages:

Autoconf (2.57) - 792 KB:
http://freshmeat.net/projects/autoconf/

Automake (1.7.6) - 545 KB:
http://freshmeat.net/projects/automake/

Bash (2.05b) - 1,910 KB:
http://freshmeat.net/projects/gnubash/

Binutils (2.14) - 10,666 KB:
http://freshmeat.net/projects/binutils/

Bison (1.875) - 796 KB:
http://freshmeat.net/projects/bison/

Bzip2 (1.0.2) - 650 KB:
http://freshmeat.net/projects/bzip2/

Coreutils (5.0) - 3,860 KB:
http://freshmeat.net/projects/coreutils/

DegaGnu (1.4.3) - 1,775 KB:
http://freshmeat.net/projects/dejagnu/

Diffutils (2.8.1) - 762 KB:
http://freshmeat.net/projects/diffutils/

E2fsprogs (1.34) - 3,003 KB:
http://freshmeat.net/projects/e2fsprogs/

Ed (0.2) - 182 KB:
http://freshmeat.net/projects/ed/

Expect (5.39.0) - 508 KB:
http://freshmeat.net/projects/expect/

File (4.04) - 338 KB: (*) See Note Below
http://freshmeat.net/projects/file/

Findutils (4.1.20) - 760 KB:
http://freshmeat.net/projects/findutils/

48

Flex (2.5.4q) - 372 KB:
ftp://ftp_gnu.org/gnu/non-gnu/flex/

Gawk (3.1.3) - 1,596 KB:
http://freshmeat.net/projects/gnuawk/

GCC (2.95.3) - 9,618 KB:
http://freshmeat.net/projects/gcc/

GCC-core(3.3.1) - 10,969 KB:
http://freshmeat.net/projects/gcc/

GCC-g++ (3.3.1) - 2,017 KB:
http://freshmeat.net/projects/gcc/

GCC-testsuite (3.3.1) - 1,033 KB:
http://freshmeat.net/projects/gcc/

Gettext (0.12.1) - 5,593 KB:
http://freshmeat.net/projects/gettext/

Glibc (2.3.2) - 13,064 KB:
http://freshmeat.net/projects/glibc/

Glibc-linuxthreads (2.3.2) - 211 KB:
http://freshmeat.net/projects/glibc/

Grep (2.5.1) - 545 KB:
http://freshmeat.net/projects/grep/

Groff (1.19) - 2,360 KB:
http://freshmeat.net/projects/groff/

Grub (0.93) - 870 KB:
ftp://alpha.gnu.org/pub/gnu/grub/

Gzip (1.3.5) - 324 KB:
ftp://alpha.gnu.org/gnu/gzip/

Inetutils (1.4.2) - 1,019 KB:
http://freshmeat.net/projects/inetutils/

Kbd (1.08) - 801 KB:
http://freshmeat.net/projects/kbd/

Less (381) - 259 KB:
http://freshmeat.net/projects/less/

LFS-Bootscripts (1.12) - 25 KB:
http://downloads. linuxfromscratch.org/lfs-bootscripts-1.12_tar.bz2

Lfs-Utils (0.3) - 221 KB:
http://ww.linuxfromscratch.org/~winkie/downloads/Ifs-utils/

Libtool (1.5) - 2,751 KB:
http://freshmeat.net/projects/libtool/

Linux (2.4.22) - 28,837 KB:
http://freshmeat.net/projects/linux/

M4 (1.4) - 310KB:
http://freshmeat.net/projects/gnumd/

Make (3.80) - 899 KB:
http://freshmeat.net/projects/gnumake

MAKEDEYV (1.7) - 8KB:
http://downloads. linuxfromscratch.org/MAKEDEV-1.7.bz2

Man (1.5m2) - 196 KB:
http://freshmeat.net/projects/man/

Man-pages (1.60) - 627 KB:
http://freshmeat.net/projects/man-pages/

Modutils (2.4.25) - 215 KB:
http://freshmeat.net/projects/modutils/

Ncurses (5.3) - 2,019 KB:
http://freshmeat.net/projects/ncurses/

Net-tools (1.60) - 194 KB:
http://freshmeat.net/projects/net-tools/

Patch (2.5.4) - 182 KB:
http://freshmeat.net/projects/patch/

Perl (5.8.0) - 10,765 KB:
http://freshmeat.net/projects/perl/

Procinfo (18) - 24 KB:
http://freshmeat.net/projects/procinfo/

Procps (3.1.11) - 242 KB:
http://freshmeat.net/projects/procps/

50

Psmisc (21.3) - 259 KB:
http://freshmeat.net/projects/psmisc/

Sed (4.0.7) - 678 KB:
http://freshmeat.net/projects/sed/

Shadow (4.0.3) - 760 KB:
http://freshmeat.net/projects/shadow/

Sysklogd (1.4.1) - 80 KB:
http://freshmeat.net/projects/sysklogd/

Sysvinit (2.85) - 91 KB:
http://freshmeat.net/projects/sysvinit/

Tar (1.13.25) - 1,281 KB:
ftp://alpha.gnu.org/gnu/tar/

Tcl (8.4.4) - 3,292 KB:
http://freshmeat.net/projects/tcltk/

Texinfo (4.6) - 1,317 KB:
http://freshmeat.net/projects/texinfo/

Util-linux (2.12) - 1,814 KB:

http://freshmeat.net/projects/util-linux/

Vim (6.2) - 3,193 KB:
http://freshmeat.net/projects/vim/

Zlib (1.1.4) - 144 KB:
http://freshmeat.net/projects/zlib/

Total size of these packages: 134 MB

F File (4.04) may not be available by the time you read this.
The master download location is known to remove old
versions when new ones are rd eased. Please refer to the
corresponding section in Appendix A for an alternate

download location.

51

Needed patches

Besides all those packages, you'll also need several patches. These correct tiny
mistakes in the packages that should be fixed by the maintainer, or just make some
small modifications to bend things our way. Y ou'll need the following:

Bash Patch - 7 KB:

http://ww . linuxfromscratch.org/patches/1fs/5.

Bison Attribute Patch - 2 KB:
http://ww.linuxfromscratch.org/patches/1fs/5

Coreutils Hostname Patch - 1 KB:
http://ww.linuxfromscratch.org/patches/1fs/5
2_patch

Coreutils Uname Patch - 1 KB:
http://ww.linuxfromscratch.org/patches/1fs/5

Ed Mkstemp Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Expect Spawn Patch - 6 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Gawk Libexecdir Patch - 1 KB:
http://ww._linuxfromscratch.org/patches/1fs/5

GCC No-Fixincludes Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5
2_patch

GCC Specs Patch - 10 KB:
http://ww . lLinuxfromscratch.org/patches/1fs/5

GCC Suppress-Libiberty Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5
libiberty.patch

GCC-2 Patch - 16 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

GCC-2 No-Fixincludes Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

GCC-2 Return-Type Patch - 1 KB:

http://ww . linuxfromscratch.org/patches/1fs/5
fix.patch

52

0/bash-2.05b-2.patch

.0/bison-1._875-attribute.patch

.0/coreutils-5.0-hostname-

.0/coreutils-5.0-uname.patch

.0/ed-0.2-mkstemp.patch

.0/expect-5.39.0-spawn.patch

.0/gawk-3.1.3-libexecdir.patch

.0/gcc-3.3.1-no_fixincludes-

.0/gcc-3.3.1-specs-2.patch

.0/gcc-3.3.1-suppress-

.0/gcc-2.95.3-2.patch

.0/gcc-2.95.3-no-fixinc.patch

.0/gcc-2.95.3-returntype-

Glibc Sscanf Patch - 2 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Grub Gce33 Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Kbd More-Programs Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Man 80-Columns Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Man Manpath Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Man Pager Patch - 1 KB:
http://ww.linuxfromscratch.org/patches/1fs/5

Ncurses Etip Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Ncurses Vsscanf Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Net-tools Mii-Tool-Gee33 Patch - 2 KB:
http://ww.linuxfromscratch.org/patches/1fs/5
1_patch

Perl Libc Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5

Procps Locale Patch - 1 KB:
http://ww.linuxfromscratch.org/patches/1fs/5
fix.patch

Shadow Newgrp Patch - 1 KB:
http://ww . linuxfromscratch.org/patches/1fs/5
fix.patch

Zlib Vsnprintf Patch - 10 KB:

http://ww . linuxfromscratch.org/patches/1fs/5.

.0/glibc-2.3.2-sscanf-1_patch

.0/grub-0.93-gcc33-1.patch

.0/kbd-1.08-more-programs.patch

.0/man-1.5m2-80cols.patch

.0/man-1._5m2-manpath.patch

.0/man-1._.5m2-pager.patch

.0/ncurses-5.3-etip-2.patch

.0/ncurses-5.3-vsscanf.patch

.0/net-tools-1.60-miitool-gcc33-

.0/perl-5.8.0-1ibc-3._patch

.0/procps-3.1.11-locale-

.0/shadow-4.0.3-newgrp-

0/zlib-1.1.4-vsnprintf_patch

In addition to the above required patches, there exist a number of optional ones crested
by the LFS community. Most of these solve sight problems, or enable some
functionality that's not enabled by default. Fedl free to examine the patches database,
located at http://www. linuxfromscratch.org/patches/, and pick any additional

patches you wish to use.

53

Chapter 5
Constructing a temporary system

Introduction

In this chapter we will compile and install a minimal Linux system. This system will
contain just enough tools to be able to start constructing the final LFS systemin the
next chapter.

The building of this minimal system is done in two steps: first we build a brand-new
and host-independent toolchain (compiler, assembler, linker and libraries), and then
use thisto build all the other essential tools.

Thefiles compiled in this chapter will be installed under the $LFS/tools directory to
keep them separate from the files installed in the next chapter. Since the packages
compiled here are merely temporary, we don't want them to pollute the soon-to-be LFS
system.

The key to learning what makes a Linux system work is to know what each package is
used for and why the user or the system needs it. For this purpose a short summary of
the content of each package is given before the actual installation instructions. For a
short description of each program in a package, please refer to the corresponding
sectionin Appendix A.

The build instructions assume that you are using the bash shell. Thereis also a general
expectation that you have already unpacked the sources for a package and have
performed a cd into the unpacked source directory before issuing the build commands.

Several of the packages are patched before compilation, but only when the patch is
needed to circumvent a problem. Often the patch is needed in both this and the next
chapter, but sometimes in only one of them. Therefore, don't worry when instructions
for a downloaded patch seem to be missing.

During theinstallation of most packages you will see all kinds of compiler warnings
scroll by on your screen. These are normal and can be safely ignored. They arejust
what they say they are: warnings — mostly about deprecated, but not invalid, use of
the C or C++ syntax. It'sjust that C standards have changed rather often and some
packages still use the older standard, which is not really a problem.

Unless told not to, you should normally delete the source and build directories after
installing each package — for cleanness sake and to save space.

Before continuing, make sure the LFS environment variableis set up properly by
executing the following:

echo $LFS

Make sure the output shows the path to your LFS partition's mount point, which is
/mnt/1fs if you followed our example.

55

Toolchain technical notes

This section attempts to explain some of the rationale and technical details behind the
overall build method. It's not essential that you understand everything here
immediately. Most of it will make sense once you have performed an actual build. Fed
freeto refer back here at any time.

The overall goal of Chapter 5 is to provide a sane, temporary environment that we can
chroot into, and from which we can produce a clean, trouble-free build of the target
LFS system in Chapter 6. Along the way, we attempt to divorce ourselves from the
host system as much as possible, and in so doing build a self-contained and self-hosted
toolchain. It should be noted that the build process has been designed in such away so
asto minimize the risks for new readers and provide maximum educational value at the
sametime. In other words, more advanced techniques could be used to build the
system.

1 Before continuing, you really should be aware of the name of
' your working platform, often also referred to as the target
triplet. For many folks the target triplet will be, for example:
1686-pc-linux-gnu. A simple way to determine your target
triplet isto run the config. guess script that comes with the
source for many packages. Unpack the Binutils sources and
run the script: ./config.guess and note the outpuit.

You'll also need to be aware of the name of your platform's
dynamic linker, often also referred to as the dynamic loader,
not to be confused with the standard linker 1d that is part of
Binutils. The dynamic linker is provided by Glibc and has the
job of finding and loading the shared libraries needed by a
program, preparing the program to run and then running it.
For most folks, the name of the dynamic linker will be ld-
linux.s0.2. On platforms that are less prevalent, the name
might be |d.so0.1 and newer 64 bit platforms might even have
something completely different. Y ou should be ableto
determine the name of your platform's dynamic linker by
looking inthe /1ib directory on your host system. A surefire
way isto inspect a random binary from your host system by
running: “readelf -1 <name of binary> | grep
interpreter” and noting the output. The authoritative
reference covering all platformsisin the shlib-versions file
in theroot of the Glibc source tree.

Some key technical points of how the Chapter 5 build method works:

e Similar in principle to cross compiling whereby tools installed into the same
prefix work in cooperation and thus utilize a little GNU "magic".

56

e Careful manipulation of the standard linker's library search path to ensure
programs are linked only against libraries we choose.

o Careful manipulation of gcc's specs fileto tell the compiler which target
dynamic linker will be used.

Binutilsisinstalled first because both GCC and Glibc perform various feature tests on
the assembler and linker during their respectiveruns of ./configure to determine
which software features to enable or disable. Thisis moreimportant than one might
first realize. Anincorrectly configured GCC or Glibc can result in a subtly broken
toolchain where the impact of such breakage might not show up until near the end of
the build of awhole distribution. Thankfully, atest suite failure will usually alert us
before too much time is wasted.

Binutilsinstalls its assembler and linker into two locations, /tools/bin and
/tools/$TARGET_TRIPLET/bin. Inreality, thetools in one location are hard linked to the
other. Animportant facet of the linker isits library search order. Detailed information
can be obtained from Id by passing it the --verbose flag. For example: *1d --verbose

| grep SEARCH™ will show you the current search paths and their order. Y ou can see
what files are actually linked by 1d by compiling a dummy program and passing the --
verbose switch. For example: "gcc dummy.c -WI,--verbose 2>81 | grep succeeded”
will show you all the files successfully opened during the link.

The next package installed is GCC and during its run of ./configure you'll see, for
example:

checking what assembler to use... /tools/i1686-pc-linux-gnu/bin/as
checking what linker to use... /tools/i1686-pc-1inux-gnu/bin/ld

Thisisimportant for the reasons mentioned above. It also demonstrates that GCC's
configure script does not search the $PATH directories to find which tools to use.
However, during the actual operation of gcc itself, the same search paths are not
necessarily used. Y ou can find out which standard linker gcc will use by running: "gcc
-print-prog-name=1d*. Detailed information can be obtained from gcc by passing it
the -v flag while compiling a dummy program. For example: "gcc -v dummy.c® will
show you detailed information about the preprocessor, compilation and assembly
stages, including gcc's include search paths and their order.

The next packageinstalled is Glibc. The most important considerations for building
Glibc are the compiler, binary tools and kernel headers. The compiler is generally no
problem as Glibc will always use the gcc found in a $PATH directory. The binary tools
and kernel headers can be a little more troublesome. Therefore we take no risks and
use the available configure switches to enforce the correct selections. After the run of
./configure you can check the contents of the config.make filein theglibc-build
directory for all the important details. Y ou'll note some interesting items like the use of
CC="gcc -B/tools/bin/" to control which binary tools are used, and also the use of the
-nostdinc and -isystem flags to control the compiler's include search path. Theseitems
help to highlight an important aspect of the Glibc package: it is very self-sufficient in
terms of its build machinery and generally does not rely on toolchain defaults.

57

After the Glibc installation, we make some adjustments to ensure that searching and
linking take place only within our /tools prefix. We install an adjusted 1d, which has a
hard-wired search path limited to /tools/lib. Then we amend gcc's specs file to point
to our new dynamic linker in /tools/lib. Thislast step is vital to the whole process.
As mentioned above, a hard-wired path to a dynamic linker is embedded into every
ELF shared executable. Y ou can inspect this by running: *readelf -1 <name of
binary> | grep interpreter”. By amending gcc's specs file, we are ensuring that
every program compiled from here through the end of Chapter 5 will use our new
dynamic linker in /tools/lib.

The need to use the new dynamic linker is also the reason why we apply the Specs
patch for the second pass of GCC. Failureto do so will result in the GCC programs
themselves having the name of the dynamic linker from the host system's /1ib
directory embedded into them, which would defeat our goal of getting away from the
host.

During the second pass of Binutils, we are able to utilize the --with-lib-path configure
switch to control 1d's library search path. From this point onwards, the core toolchain
is self-contained and self-hosted. The remainder of the Chapter 5 packages all build
against the new Glibc in /tools and al iswell.

Upon entering the chroot environment in Chapter 6, the first major package weinstall
is Glibc, dueto its salf-sufficient nature that we mentioned above. Oncethis Glibc is
installed into Zusr, we perform a quick changeover of the toolchain defaults, then
proceed for real in building the rest of the target Chapter 6 LFS system.

Notes on static linking

Most programs have to perform, beside their specific task, many rather common and
sometimes trivial operations. These include all ocating memory, searching directories,
reading and writing files, string handling, pattern matching, arithmetic and many other
tasks. Instead of obliging each program to reinvent the wheel, the GNU system
provides all these basic functions in ready-made libraries. The major library on any
Linux systemis Glibc.

There are two primary ways of linking the functions from alibrary to a program that
uses them: statically or dynamically. When a program is linked statically, the code of
the used functionsis included in the executabl e, resulting in arather bulky program.
When a program is dynamically linked, what is included is a reference to the dynamic
linker, the name of the library, and the name of the function, resulting in a much
smaller executable. (A third way is to use the programming interface of the dynamic
linker. See the dlopen man page for more information.)

Dynamic linking is the default on Linux and has three major advantages over static
linking. First, you need only one copy of the executable library code on your hard disk,
instead of having many copies of the same code included into a whole bunch of
programs — thus saving disk space. Second, when several programs use the same
library function at the same time, only one copy of the function's code is required in
core— thus saving memory space. Third, when alibrary function gets a bug fixed or is

58

otherwise improved, you only need to recompile this one library, instead of having to
recompile all the programs that make use of the improved function.

If dynamic linking has several advantages, why then do we statically link the first two
packages in this chapter? The reasons are threefold: historical, educational, and
technical. Historical, because earlier versions of LFS statically linked every program in
this chapter. Educational, because knowing the difference is useful. Technical, because
we gain an e ement of indegpendence from the host in doing so, meaning that those
programs can be used independently of the host system. However, it's worth noting
that an overall successful LFS build can still be achieved when the first two packages
are built dynamically.

Creating the $LFS/tools directory

All programs compiled in this chapter will beinstalled under $LFS/tools to keep them
separate from the programs compiled in the next chapter. The programs compiled here
are only temporary tools and won't be a part of the final LFS system and by keeping
them in a separate directory, we can later easily throw them away.

If later you wish to search through the binaries of your system to see what files they
make use of or link against, then to make this searching easier you may want to choose
aunique name. Instead of the simple "tools" you could use something like "tools-for-
Ifs".

Create the required directory by running the following:
mkdir $LFS/tools

The next step isto create a /tools symlink on your host system. It will point to the
directory wejust created on the LFS partition:

In -s $LFS/tools /

This symlink enables us to compile our toolchain so that it always refersto /tools,
meaning that the compiler, assembler and linker will work both in this chapter (when
we are still using sometools from the host) and in the next (when we are chrooted to
the LFS partition).

F Study the above command closely. It can be confusing at first
glance. The In command has several syntax variations, so be
sure to check the In man page before reporting what you may
think isan error.

59

Adding the user Ifs

When logged in as root, making a single mistake can damage or even wreck your
system. Therefore we recommend that you build the packages in this chapter as an
unprivileged user. You could of course use your own user name, but to make it easier
to set up a clean work environment we'll create a new user Ifs and use this one during
theinstallation process. As root, issue the following commands to add the new user:

useradd -s /bin/bash -m Ifs
passwd Ifs

Now grant this new user Ifs full access to $LFS/tools by giving it ownership of the
directory:

chown Ifs $LFS/tools

If you made a separate working directory as suggested, give user Ifs ownership of this
directory too:

chown Ifs $LFS/sources

Next, login as user Ifs. This can be done via a virtual console, through a display
manager, or with the following substitute user command:

su - Ifs

The"-" instructs su to start a new, clean shell.

Setting up the environment

Whilelogged in as user Ifs, issue the following commands to set up a good work
environment:

cat > ~/.bash_profile << "EOF"

set +h

umask 022

LFS=/mnt/Ifs

LC_ALL=POSIX

PATH=/tools/bin:$PATH

export LFS LC ALL PATH

unset CC CXX CPP LD LIBRARY_PATH LD PRELOAD
EOF

source ~/._bash_profile

Theset +h command turns off bash's hash function. Normally hashing is a useful
feature: bash uses a hash table to remember the full pathnames of executable files to
avoid searching the PATH time and time again to find the same executable. However,
we'd like the new tools to be used as soon as they areinstalled. By switching off the
hash function, our "interactive" commands (make, patch, sed, cp and so forth) will
always use the newest available version during the build process.

60

Setting the user file-creation mask to 022 ensures that newly created files and
directories are only writable for their owner, but readable and executable for anyone.

The LFS variable should of course be set to the mount point you chose.

TheLC_ALL variable controls the localization of certain programs, making their
messages follow the conventions of a specified country. If your host system uses a
version of Glibc older than 2.2.4, having LC_ALL set to something other than
"POSIX" or "C" during this chapter may cause trouble if you exit the chroot
environment and wish to return later. By setting LC_ALL to "POSIX" (or "C", thetwo
are equivalent) we ensure that everything will work as expected in the chroot
environment.

We prepend /tools/bin to the standard PATH so that, as we move along through this
chapter, the tools we build will get used during the rest of the building process.

The CC, CXX, CPP, LD_LIBRARY_PATH and LD_PRELOAD environment
variables all have the potential to cause havoc with our Chapter 5 toolchain. We
therefore unset them to prevent any chance of this happening.

Now, after sourcing the just-created profile, we're all set to begin building the
temporary tools that will support usin later chapters.

Installing Binutils-2.14 - Pass 1

Estimated build time: 1.0 SBU
Estimated required disk space: 194 MB

Contents of Binutils

Binutilsis a collection of software development tools containing a linker, assembler
and other tools to work with object files and archives.

Installed programs: addr2line, ar, as, c++filt, gprof, Id, nm, objcopy, objdump, ranlib,
readelf, size, strings and strip

Installed libraries: libiberty.a, libbfd.[a,s0] and libopcodes.[a,s0]

Binutils Installation Dependencies

Binutils depends on: Bash, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl,
Sed, Texinfo.

Installation of Binutils

It isimportant that Binutils be the first package to get compiled, because both Glibc
and GCC perform various tests on the available linker and assembler to determine
which of their own features to enable.

61

F Even though Binutils is an important toolchain package, we
are not going to run the test suite at this early stage. First, the
test suite framework is not yet in place and second, the
programs from this first pass will soon be overwritten by
those installed in the second pass.

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting or modifying them when
building Binutils.

The Binutils documentation recommends building Binutils outside of the source
directory in a dedicated build directory:

mkdir ../binutils-build
cd ../binutils-build

F If you want the SBU values listed in the rest of the book to be of
any use, you will have to measure the time it takes to build this
package. To achievethis easily, you could do something like:

time { ./configure ... && ... && ... && make install; }.

Now prepare Binutils for compilation:

../binutils-2._14/configure \
--prefix=/tools --disable-nls

The meaning of the configure options:

o —-prefix=/tools: Thistdls the configure script to prepareto install the
Binutils programs in the /tools directory.

e --disable-nls: This disables internationalization (a word often shortened to
i18n). We don't need this for our static programs and nls often causes problems
when linking statically.

Continue with compiling the package:

make configure-host
make LDFLAGS="-all-static"

The meaning of the make parameters:

e configure-host: Thisforces all the subdirectories to be configured
immediately. A statically linked build will fail without it. We therefore use this
option to work around the problem.

e LDFLAGS="-all-static": Thistdlsthelinker that all the Binutils programs
should belinked statically. However, strictly speaking, "-all-static"” isfirst
passed to the libtool program which then passes "'-static™ on to the linker.

62

And install the package:

make install

Now prepare the linker for the "locking in" of Glibc later on:

make -C Id clean
make —C Id LDFLAGS="-all-static™ LIB_PATH=/tools/lib

The meaning of the make parameters:

e -C Id clean: Thistells the make program to remove all the compiled files, but
only in the Id subdirectory.

e -C Id LDFLAGS="-all-static" LIB_PATH=/tools/lib: This option rebuilds
everything in the Id subdirectory. Specifying the LIB_PATH makefile variable
on the command line allows us to override the default value and have it point
to our temporary tools location. The value of this variable specifies the linker's
default library search path. You'll see how this preparation is used later onin
the chapter.

Do not yet remove the Binutils build and source directories.
You will need them again in their current state a bit further
on in this chapter.

",
i

63

Installing GCC-3.3.1 - Pass 1

Estimated build time: 4.4 SBU
Estimated required disk space: 300 MB

Contents of GCC

The GCC package contains the GNU compiler collection, including the C and C++
compilers.

Installed programs: c++, cc (link to gcc), ccl, cclplus, collect2, cpp, g++, gec, gecbug,
and gcov

Installed libraries: libgcc.a, libgec_eh.a, libgee_s.so, libstde++.[a,s0] and libsupc++.a

GCC Installation Dependencies

GCC depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, Gettext, Glibc,
Grep, Make, Perl, Sed, Texinfo.

Installation of GCC

Unpack only the GCC-core tarball, as we won't be needing a C++ compiler for the
moment.

F Even though GCC is an important toolchain package, we are
not going to run the test suite at this early stage. First, the test
suite framework is not yet in place and second, the programs
from this first pass will soon be overwritten by those
installed in the second pass.

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting or modifying them when
building GCC.

The GCC documentation recommends building GCC outside of the source directory in
a dedicated build directory:

mkdir ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

../gcc-3.3.1/configure --prefix=/tools \
--with-local-prefix=/tools \
--disable-nls --enable-shared \
--enable-languages=c

The meaning of the configure options:

--with-local-prefix=/tools: The purpose of this switch isto remove
/usr/local/include from gcc's include search path. Thisis not absolutely
essential; however, we want to try to minimize the influence of the host
system, thus making this a sensible thing to do.

--enable-shared: This switch may seem counter-intuitive at first. But using it
allows the building of libgcc_s.so.1 and libgcc_eh.a, and having
libgcc_eh.a available ensures that the configure script for Glibe (the next
package we compile) produces the proper results. Note that the gcc binaries
will still belinked statically, asthisis controlled by the -static value of
BOOT_LDFLAGS further on.

--enable-languages=c: This option ensures that only the C compiler is built.
The option is only needed when you have downloaded and unpacked the full
GCC tarball.

Continue with compiling the package:
make BOOT LDFLAGS="-static" bootstrap

The meaning of the make parameters:

BOOT_LDFLAGS="-static": Thistells GCC to link its programs statically.

bootstrap: This target doesn't just compile GCC, but compiles it several times.
It uses the programs compiled in a first round to compileitself a second time,
and then again a third time. It then compares these second and third compiles
to make sure it can reproduce itself flawlessly, which most probably means
that it was compiled correctly.

And install the package:

make install

As afinishing touch well create the /tools/bin/cc symlink. Many programs and
scriptsrun cc instead of gcc, a thing meant to keep programs generic and therefore
usable on all kinds of Unix systems. Not everybody has the GNU C compiler installed.
Simply running cc leaves the system administrator free to decide what C compiler to
install, as long as there's a symlink pointing to it:

In -sf gcc /tools/bin/cc

65

Installing Linux-2.4.22 headers

Estimated build time: 0.1 SBU
Estimated required disk space: 186 MB

Contents of Linux

The Linux kernel is at the core of every Linux system. It's what makes Linux tick.
When a computer is turned on and boots a Linux system, the very first piece of Linux
software that gets loaded is the kernel. The kernel initializes the system's hardware
components: serial ports, paralle ports, sound cards, network cards, IDE controllers,
SCSI controllersand alot more. In a nutshell the kernel makes the hardware available
so that the software can run.

Installed files: the kernel and the kernel headers

Linux Installation Dependencies

Linux depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make,
Modutils, Perl, Sed.

Installation of the kernel headers

As some packages need to refer to the kernel header files, we're going to unpack the
kernel archive now, set it up, and copy the required files to a place where gcc can later
find them.

Prepare for the header installation with:
make mrproper

This ensures that the kernel treeis absolutely clean. The kernel team recommends that
this command be issued prior to each kernel compilation. Y ou shouldn't rely on the
source tree being clean after untarring.

Create the include/linux/version.h file:
make include/linux/version.h
Create the platform-specific include/asm symlink:

make symlinks

66

Install the platform-specific header files:

mkdir /tools/include/asm
cp include/asm/* /tools/include/asm
cp -R include/asm-generic /tools/include

Install the cross-platform kernel header files:
cp -R include/linux /tools/include

Thereare afew kernel header files which make use of the autoconf.h header file.
Since we do not yet configure the kernel, we need to create this file ourseves in order
to avoid compilation failures. Create an empty autoconf.h file:

touch /tools/include/linux/autoconf.h

67

Installing Glibc-2.3.2

Estimated build time: 11.8 SBU
Estimated required disk space: 800 MB

Contents of Glibc

Glibc isthe C library that provides the system calls and basic functions such as open,
malloc, printf, etc. The C library is used by all dynamically linked programs.

Installed programs: catchsegv, gencat, getconf, getent, glibcbug, iconv, iconvconfig,
Idconfig, I1dd, Iddlibc4, locale, localedef, mtrace, nscd, nscd_nischeck, pcprofiledump,
pt_chown, rpcgen, rpcinfo, sin, sprof, tzsdect, xtrace, zdump and zic

Installed libraries: 1d.so, libBrokenL ocale.[a,s0], libSegFault.so, libanl.[a,s0], libbsd-
compat.a, libc.[a,s0], libc_nonshared.a, libcrypt.[a,s0], libdl.[a,s0], libg.a, libieee.a,
libm.[a,s0], libmcheck.a, libmemusage.so, libnsl.a, libnss_compat.so, libnss_dns.so,
libnss _files.so, libnss_hesiod.so, libnss _nis.so, libnss_nisplus.so, libpcprofile.so,
libpthread.[a,s0], libresolv.[a,s0], librpcsve.a, librt.[a,so], libthread _db.so and
libutil.[a,s0]

Glibc Installation Dependencies

Glibc depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep,
Make, Perl, Sed, Texinfo.

Glibc installation

Before starting to install Glibc, you must cd into the glibc-2.3.2 directory and unpack
Glibc-linuxthreads in that directory, not in the directory where you usually unpack all
the sources.

F We are going to run the test suite for Glibc in this chapter.
However, it's worth pointing out that running the Glibc test
suite hereis considered not as important asrunning it in
Chapter 6.

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting them when building Glibc.

Basically, compiling Glibc in any other way than the book suggests is putting the
stability of your system at risk.

68

Though it is a harmless message, the install stage of Glibc will complain about the
absence of /tools/etc/1d.so.conf. Fix this annoying little warning with:

mkdir /tools/etc
touch /tools/etc/1d.so.conf

Also, Glibc has a subtle problem when compiled with GCC 3.3.1. Apply the following
patch to fix this:

patch -Npl -1 ../glibc-2.3.2-sscanf-1.patch

The Glibc documentation recommends building Glibc outside of the source directory
in a dedicated build directory:

mkdir ../glibc-build
cd ../glibc-build

Next, prepare Glibc for compilation:

../glibc-2.3.2/configure --prefix=/tools \
--disable-profile --enable-add-ons \
--with-headers=/tools/include \
--with-binutils=/tools/bin \
--without-gd

The meaning of the configure options:

o --disable-profile: Thisdisables the building of the libraries with profiling
information. Omit this option if you plan to do profiling.

e --enable-add-ons: This enables any add-ons that were installed with Glibc, in
our case Linuxthreads.

e —-with-binutils=/tools/bin and --with-headers=/tools/include: Strictly
speaking these switches are not required. But they ensure nothing can go
wrong with regard to what kernel headers and Binutils programs get used
during the Glibc build.

e --without-gd: This switch ensures that we don't build the memusagestat
program, which strangely enough insists on linking against the host's libraries
(libgd, libpng, libz, and so forth).

During this stage you might see the following warning:

configure: WARNING:

*** These auxiliary programs are missing or incompatible versions: msgfmt
*** some features will be disabled.

*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless, but it's believed it
can sometimes cause problems when running the test suite.

Compile the package:

make

69

Run the test suite:
make check

The Glibc test suiteis highly dependent on certain functions of your host system, in
particular the kernel. Additionally, herein this chapter some tests can be adversely
affected by existing tools or environmental issues on the host system. Of course, these
won't be a problem when we run the Glibc test suite inside the chroot environment of
Chapter 6. In general, the Glibc test suite is always expected to pass. However, as
mentioned above, some failures are unavoidable in certain circumstances. Hereis alist
of the most common issues we are aware of:

e Themath tests sometimes fail when running on systems where the CPU is not
areatively new genuine Intel or authentic AMD. Certain optimization settings
are also known to be a factor here.

o Thegettext test sometimes fails due to host system issues. The exact reasons
arenot yet clear.

e Theatime test sometimes fails when the LFS partition is mounted with the
noatime option, or due to other file system quirks.

e Theshmtest might fail when the host system is running the devfs file system
but doesn't have the tmpfs file system mounted at /dev/shm due to lack of
support for tmpfs in the kernel.

e When running on older and slower hardware, some tests might fail due to test
timeouts being exceeded.

In summary, don't worry too much if you see Glibc test suite failures herein this
chapter. The Glibc in Chapter 6 isthe one well ultimately end up using so that is the
one we would really like to see pass. But please keep in mind, even in Chapter 6 some
failures could still occur — the math tests for example. When experiencing afailure,
make a note of it, then continue by reissuing the make check. The test suite should pick
up whereit left off and continue on. Y ou can circumvent this stop-start sequence by
issuing amake -k check. But if you do that, be sureto log the output so that you can
later perusethelog file and examine the total number of failures.

Now install the package:
make install

Different countries and cultures have varying conventions for how to communicate.
These conventions range from very simple ones, such as the format for representing
dates and times, to very complex ones, such as the language spoken. The
"internationalization” of GNU programs works by means of locales. Wéll install the
Glibc locales now:

make localedata/install-locales

An alternative to running the previous command is to install only those locales which
you need or want. This can be achieved by using the localedef command. Information
on this can befound in the INSTALL fileintheglibc-2.3.2 source. However, there are
anumber of locales that are essential for the tests of future packages to pass, in

70

particular, the libstdc+ + tests from GCC. The following instructions, instead of the
install-locales target above, will install the minimum set of locales necessary for the
tests to run successfully:

mkdir -p /tools/lib/locale

localedef -i de DE -f 1S0-8859-1 de DE

localedef -i de DE@euro -f 1S0-8859-15 de DE@euro
localedef -i en HK -f 1S0-8859-1 en HK

localedef -i en PH -f 1S0-8859-1 en PH

localedef -i en US -f 1S0-8859-1 en US

localedef -1 es MX -f 1S0-8859-1 es MX

localedef -1 fr_FR -f 1S0-8859-1 fr_FR

localedef -i fr_FR@euro -f 1S0-8859-15 fr FR@euro
localedef -1 it IT -f 1S0-8859-1 it IT

localedef -i ja JP -f EUC-JP ja JP

"Locking in" Glibc

Now that the temporary C libraries have been installed, we want all the tools compiled
in therest of this chapter to be linked against these libraries. To accomplish this, we
need to adjust the linker and the compiler's specsfile.

First install the adjusted linker by running the following from within the binutils-
build directory:

make -C Id install

Thelinker was adjusted a little while back, at the end of the first pass of Binutils. From
this point onwards everything will link only against the libraries in /tools/lib.

F If you somehow missed the earlier warning to retain the Binutils
source and build directories from the first pass or otherwise
accidentally deleted them or just don't have access to them, don't
worry, all isnot lost. Just ignore the above command. The result
isasmall chance of subsequent programs linking against
libraries on the host. Thisis not ideal, however, it's not a major
problem. The situation is corrected when we install the second
pass of Binutils later on.

Now that the adjusted linker isinstalled, you have to remove the Binutils build and
source directories.

The next thing to do is to amend our GCC specs file so that it points to the new
dynamic linker. A simple sed will accomplish this:

SPECFILE=/tools/lib/gcc-1ib/*/*/specs &&

sed -e "s@ /lib/ld-linux.so.2@ /tools/lib/1d-linux.so.2@g" \
$SPECFILE > tempspecfile &&

mv -f tempspecfile $SPECFILE &&

unset SPECFILE

71

We recommend that you cut-and-paste the above rather than try and typeit all in. Or
you can edit the specs file by hand if you want to: just replace any occurrence of
"/lib/ld-linux.so0.2" with "/toolg/lib/Id-linux.s0.2".

1 If you are working on a platform where the name of the dynamic
' linker is something other than Id-linux.so.2, you must substitute Id-
linux.so.2 with the name of your platform's dynamic linker in the
above commands. Refer back to the Section called Toolchain
technical notes if necessary.

Lastly, thereis a possibility that some include files from the host system have found
their way into GCC's private include dir. This can happen because of GCC's
"fixincludes" process which runs as part of the GCC build. Wéell explain more about
this further on in this chapter. For now, run the following commands to eiminate this
possibility:

rm -f /tools/lib/gcc-1ib/*/*/include/{pthread.h,bits/sigthread.h}

A It isimperative at this point to stop and ensure that the basic
functions (compiling and linking) of the new toolchain are working
as expected. For this we are going to perform a simple sanity check:

echo "main(){}" > dummy.c
gcc dummy.c
readelf -1 a.out | grep ": /tools"

If everything is working correctly, there should be no errors, and the
output of the last command will be:

[Requesting program interpreter: /tools/lib/ld-linux.so.2]

If you did not receive the output as shown above, or received no
output at all, then something is seriously wrong. Y ou will need to
investigate and retrace your steps to find out where the problem is
and correct it. Thereis no point in continuing until thisis done. Most
likely something went wrong with the specs file amendment above.
Note especially that /tools/lib appears as the prefix of our dynamic
linker. Of course, if you are working on a platform where the name of
the dynamic linker is something other than 1d-linux.so.2, then the
output will be slightly different.

Onceyou are satisfied that all iswell, clean up the test files:

rm dummy.c a.out

This completes theinstallation of the self-contained toolchain, and it can now be used
to build the rest of the temporary tools.

72

Installing Tcl-8.4.4

Estimated build time: 0.9 SBU
Estimated required disk space: 23 MB

Contents of Tcl

The Tcl package contains the Tool Command Language.
Installed programs: tclsh (link to tclsh8.4), tclsh8.4
Installed library: libtcl8.4.s0

Tcl Installation Dependencies
Tcl depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Tcl

This package and the next two are only installed to be able to run the test suites for
GCC and Binutils. Installing three packages just for testing purposes may seem like
overkill, but it is very reassuring, if not essential, to know that our most important tools
areworking properly.

Prepare Tcl for compilation:

cd unix
./configure --prefix=/tools

Build the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. However, the Tcl test suitein this chapter is known to experience
failures under certain host conditions that are not fully understood. Therefore, test suite
failures here are not surprising, but are not considered critical. Should you choose to
run the test suite, the following command will do so:

TZ=UTC make test
The meaning of the make parameter:

e TZ=UTC: This sets the time zone to Coordinated Universal Time (UTC) also
known as Greenwich Mean Time (GMT), but only for the duration of the test
suite run. This ensures the clock tests are exercised correctly. More
information on the TZ environment variableis available later on in Chapter 7.

Sometimes, package test suites will give falsefailures. Y ou can consult the LFS Wiki
at http://wiki . linuxfromscratch.org/ to verify that these failures are normal. This
applies to all tests throughout the book.

73

Install the package:

make install

1 Do not remove the tcl8.4.4 source directory yet, as the next
package will need its internal headers.

Make a necessary symbolic link:
In -s tclsh8.4 /tools/bin/tclsh

74

Installing Expect-5.39.0

Estimated build time: 0.1 SBU
Estimated required disk space: 3.9 MB

Contents of Expect

The Expect package provides a program that performs programmed dial ogue with
other interactive programs.

Installed program: Expect 228
Installed library: libexpect5.39.a

Expect Installation Dependencies

Expect depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed,
Tdl.

Installation of Expect
First apply a patch:
patch -Npl -1 ../expect-5.39.0-spawn.patch

This fixes abug in Expect that can result in bogus failures during the GCC test suite
run.

Now prepare Expect for compilation:
./configure --prefix=/tools --with-tcl=/tools/lib --with-x=no
The meaning of the configure options:

e —-with-tcl=/tools/lib: This ensures that the configure script finds the Tcl
installation in our temporary tools location. We don't want it to find an existing
onethat may possibly reside on the host system.

e --with-x=no: This tells the configure script not to search for Tk (the Tcl GUI
component) or the X Window System libraries, both of which may possibly
reside on the host system.

Build the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. However, the Expect test suite herein Chapter 5 is known to
experience failures under certain host conditions that are not fully understood.
Therefore, test suite failures here are not surprising, but are not considered critical.
Should you choose to run the test suite, the following command will do so:

make test

75

And install:
make SCRIPTS="" install
The meaning of the make parameter:

e SCRIPTS="": This prevents installation of the supplementary expect scripts
which are not needed.

Y ou can now remove the source directories of both Tcl and Expect.

76

Installing DejaGnu-1.4.3

Estimated build time: 0. U
8.

1 SB
Estimated required disk space: 6 MB

Contents of DejaGnu
The DgaGnu package contains a framework for testing other programs.
Installed program: runtest

DejaGnu Installation Dependencies

Dejagnu depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Sed.

Installation of DejaGnu
Prepare DejaGnu for compilation:
./configure --prefix=/tools
Build and install the package:

make install

77

Installing GCC-3.3.1 - Pass 2

Estimated build time: 11.0 SBU
Estimated required disk space: 274 MB

Re-installation of GCC

Thetools required to test GCC and Binutils areinstalled now (Tcl, Expect and
DejaGnu). We can continue on rebuilding GCC and Binutils, link them against the new
Glibc, and test them properly. One thing to note, however, is that these test suites are
highly dependent on properly functioning pseudo terminals (PTY's) which are provided
by your host distribution. These days, PTY's are most commonly implemented via the
devpts file system. Y ou can quickly check if your host system is set up correctly in this
regard by performing a simple test:

expect -c "'spawn Is"

If you receive the message:

The system has no more ptys. Ask your system administrator to create more.

Your host distribution is not set up for proper PTY operation. In this case thereis no
point in running the test suites for GCC and Binutils until you are able to resolve the
issue. You can consult the LFS Wiki at http://wiki . linuxfromscratch.org/ for more
information on how to get PTY's working.

Unpack all three GCC tarballs (-core, -g++, and -testsuite) in one and the same
working directory. They will all unfold into a single gcc-3.3.1/ subdirectory.

First correct one problem and make an essential adjustment:

patch -Npl -1 ../gcc-3.3.1-no_fixincludes-2.patch
patch -Npl -1 ../gcc-3.3.1-specs-2.patch

Thefirst patch disables the GCC "fixincludes" script. We mentioned this briefly

earlier, but a slightly morein-depth explanation of the fixincludes process is warranted
here. Under normal circumstances, the GCC fixincludes script scans your system for
header files that need to be fixed. It might find that some Glibc header files on your
host system need to be fixed, fix them and put them in the GCC private include
directory. Then, later on in Chapter 6, after we've installed the newer Glibc, this private
include directory would be searched before the system include directory, resulting in
GCC finding the fixed headers from the host system, which would most likely not
match the Glibc version actually used for the LFS system.

The last patch changes GCC's default location of the dynamic linker (typically 1d-
linux.so.2). It also removes /usr/include from GCC's include search path. Patching
now rather than adjusting the specs file after installation ensures that our new dynamic
linker gets used during the actual build of GCC. That is, al the final (and temporary)
binaries created during the build will link against the new Glibc.

78

These patches are critical in ensuring a successful overall
build. Do not forget to apply them.

Create a separate build directory again:

mkdir ../gcc-build
cd ../gcc-build

Before starting to build GCC, remember to unset any environment variables that
override the default optimization flags.

Now prepare GCC for compilation:

../gcc-3.3.1/configure --prefix=/tools \
--with-local-prefix=/tools \
--enable-clocale=gnu --enable-shared \
--enable-threads=posix --enable-_cxa atexit \
--enable-languages=c,c++

The meaning of the new configure options:

e --enable-threads=posix: This enables C++ exception handling for multi-
threaded code.

e -—-enable-__cxa atexit: Thisoption allows use of __cxa_atexit, rather than
atexit, to register C++ destructors for local statics and global objects and is
essential for fully standards-compliant handling of destructors. It also affects
the C++ ABI and therefore results in C++ shared libraries and C++ programs
that are interoperable with other Linux distributions.

e --enable-clocale=gnu: This option ensures the correct locale model is selected
for the C++ libraries under all circumstances. If the configure script finds the
de DE localeinstalled, it will sdect the correct model of gnu. However,
people who don't install the de_DE locale, run therisk of building ABI
incompatible C++ libraries due to the wrong locale model of generic being
selected.

e --enable-languages=c,c++: This option is needed to ensure that both C and
C++ compilers are built.

Compile the package:
make

Thereis no need to use the bootstrap target now, as the compiler we're using to
compilethis GCC was built from the exact same version of the GCC sources we used
earlier.

F It's worth pointing out that running the GCC test suite hereis
considered not as important as running it in Chapter 6.

79

Test theresults:

make -k check

The -k flag is used to make the test suite run through to completion and not stop at the
first failure. The GCC test suiteis very comprehensive and is almost guaranteed to
generate a few failures. To get a summary of the test suite results, run this:

../gcc-3.3.1/contrib/test_summary | more

Y ou can compare your results to those posted to the gec-testresults mailing list for
similar configurations to your own. For an example of how current GCC-3.3.1 should
look on i1686-pc-linux-gnu, see http://gcc.gnu.org/ml/gcc-testresults/2003-
08/msg01612.html.

Note that the results contain:

1 XPASS (unexpected pass) for g++

1 FAIL (unexpected failure) for g++
2 FAIL for gcc

26 XPASS*s for libstdc++

* %k % %

The unexpected pass for g++ is due to the use of --enable-__cxa_atexit. Apparently
not all platforms supported by GCC have support for "__cxa_atexit" in their C
libraries, so thistest is not always expected to pass.

The 26 unexpected passes for libstdc++ are due to the use of --enable-clocale=gnu,
which is the correct choice on Glibc-based systems of versions 2.2.5 and above. The
underlying locale support in the GNU C library is superior to that of the otherwise
selected "generic' model (which may be applicable if for instance you were using
Newlibc, Sun-libc or whatever libc). The libstdc++ test suite is apparently expecting
the "generic" model, hence those tests are not always expected to pass.

Unexpected failures often cannot be avoided. The GCC developers are usually aware
of them but haven't yet gotten around to fixing them. In short, unless your results are
vastly different from those at the above URL, it is safe to continue on.

And finally install the package:

make install

F At this point it is strongly recommended to repeat the sanity
check we performed earlier in the chapter. Refer back to the
Section called "Locking in" Glibc and repeat the check. If the
results arewrong, then most likely you forgot to apply the
above mentioned GCC Specs patch.

80

Installing Binutils-2.14 - Pass 2

Estimated build time: 1.5 SBU
Estimated required disk space: 108 MB

Re-installation of Binutils
Create a separate build directory again:

mkdir ../binutils-build
cd ../binutils-build

Now prepare Binutils for compilation:

../binutils-2_14/configure --prefix=/tools \
--enable-shared --with-l1ib-path=/tools/lib
The meaning of the new configure option:

e —-with-lib-path=/tools/lib: Thistells the configure script to specify the
default library search path. We don't want the library search path to contain
library directories from the host system.

Before starting to build Binutils, remember to unset any environment variables that
override the default optimization flags.

Compile the package:
make

F It's worth pointing out that running the Binutils test suite here
is considered not as important as running it in Chapter 6.

Test the results (there should be no unexpected failures here, expected failures are
fine):

make check

Unfortunately, thereis no easy way to view the test results summary like there was for
the previous GCC package. However, if afailure occurs here, it should be easy to spot.
The output shown will contain something like:

make[1]: *** [check-binutils] Error 2

And install the package:

make install

81

Now prepare Binutils for the re-adjusting of the toolchain in the next chapter:

make -C Id clean
make -C Id LIB_PATH=/usr/lib:/lib

Do not yet remove the Binutils source and build directories.
Well need these directories again in the next chapter in the
state they arein now.

",
i

82

Installing Gawk-3.1.3

Estimated build time: 0.2 SBU
Estimated required disk space: 17 MB

Contents of Gawk
Gawk is an awk implementation that is used to manipulate text files.

Installed programs: awk (link to gawk), gawk, gawk-3.1.3, grcat, igawk, pgawk,
pgawk-3.1.3 and pwcat

Gawk Installation Dependencies

Gawk depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Installation of Gawk
Prepare Gawk for compilation:
./configure --prefix=/tools
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure

it built correctly. Should you choose to run it, the following command will do so:
make check
And install it:

make install

83

Installing Coreutils-5.0

Estimated build time: 0.9 SBU
Estimated required disk space: 69 MB

Contents of Coreutils
The Coreutils package contains a whole series of basic shell utilities.

Installed programs: basename, cat, chgrp, chmod, chown, chroot, cksum, comm, cp,
csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor,
false, fmt, fold, groups, head, hostid, hostname, id, install, join, kill, link, In, logname,
Is, md5sum, mkdir, mkfifo, mknod, mv, nice, nl, nohup, od, paste, pathchk, pinky, pr,
printenv, printf, ptx, pwd, readlink, rm, rmdir, seqg, shalsum, shred, sleep, sort, split,
stat, stty, su, sum, sync, tac, tail, tee, test, touch, tr, true, tsort, tty, uname, unexpand,
uniq, unlink, uptime, users, vdir, wc, who, whoami and yes

Coreutils Installation Dependencies

Coreutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Perl, Sed.

Installation of Coreutils
Prepare Coreutils for compilation:
./configure --prefix=/tools
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make RUN_EXPENSIVE TESTS=yes check
The meaning of the make parameter:

e RUN_EXPENSIVE TESTS=yes: Thistells thetest suiteto run several additional
tests that are considered relatively expensive on some platforms. However,
they are generally not a problem on Linux.

And install the package:

make install

Installing Bzip2-1.0.2

Estimated build time: 0. U
2.

1 SB
Estimated required disk space: 5 MB

Contents of Bzip2

Bzip2 is a block-sorting file compressor which generally achieves a better compression

than the traditional gzip does.

Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp, bzdiff,
bzegrep, bzfgrep, bzgrep, bzip2, bzip2recover, bzless and bzmore

Installed libraries: libbz2.a, libbz2.so (link to libbz2.50.1.0), libbz2.50.1.0 (link to
libbz2.50.1.0.2) and libbz2.50.1.0.2

Bzip2 Installation Dependencies
Bzip2 depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make.

Installation of Bzip2

The Bzip2 package doesn't contain a configure script. Compileand install it with a
straightforward:

make PREFIX=/tools install

85

Installing Gzip-1.3.5

Estimated build time: 0. U
2.

1 SB
Estimated required disk space: 6 MB

Contents of Gzip

The Gzip package contains programs to compress and decompress files using the
Lempel-Ziv coding (LZ77).

Installed programs: gunzip (link to gzip), gzexe, gzip, uncompress (link to gunzip),
zcat (link to gzip), zcmp, zdiff, zegrep, zfgrep, zforce, zgrep, zless, zmore and znew

Gzip Installation Dependencies
Gzip depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Gzip
Prepare Gzip for compilation:
./configure --prefix=/tools
Compile the package:

make

And install it:

make install

86

Installing Diffutils-2.8.1

Estimated build time: 0.1 SBU
Estimated required disk space: 7.5 MB

Contents of Diffutils

The programs from this package show you the differences between two files or
directories. It's most common use is to create software patches.

Installed programs: cmp, diff, diff3 and sdiff

Diffutils Installation Dependencies

Diffutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Installation of Diffutils
Prepare Diffutils for compilation:
./configure --prefix=/tools
Compile the package:

make

And install it:

make install

87

Installing Findutils-4.1.20

Estimated build time: 0.2 SBU
Estimated required disk space: 7.6 MB

Contents of Findutils

The Findutils package contains programs to find files, either on-the-fly (by doing alive
recursive search through directories and only showing files that match the
specifications) or by searching through a database.

Installed programs: bigram, code, find, frcode, locate, updatedb and xargs

Findutils Installation Dependencies

Findutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Installing Findutils
Prepare Findutils for compilation:
./configure --prefix=/tools
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
And install the package:

make install

88

Installing Make-3.80

Estimated build time: 0.2
Estimated required disk space: 8.8

SBU
MB

Contents of Make

Make determines, automatically, which pieces of a large program need to be
recompiled and issues the commands to recompile them.

Installed program: Make 249

Make Installation Dependencies
Make depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Sed.

Installation of Make
Prepare Make for compilation:
./configure --prefix=/tools
Compile the program:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
Theninstall it and its documentation:

make install

89

Installing Grep-2.5.1

Estimated build time: 0.1
Estimated required disk space: 5.8

SBU
MB

Contents of Grep
Grep isa program used to print lines from a file matching a specified pattern.
Installed programs: egrep (link to grep), fgrep (link to grep) and grep

Grep Installation Dependencies

Grep depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Make, Sed,
Texinfo.

Installation of Grep
Prepare Grep for compilation:

-/configure --prefix=/tools \
--disable-perl-regexp --with-included-regex

The meaning of the configure options:

e --disable-perl-regexp: This makes surethat grep does not get linked against
a PCRE library that may be present on the host, but would not be available
once we enter the chroot environment.

e --with-included-regex: This ensures that Grep usesits internal regular
expression code. Without it, it will use the code from Glibc, which is known to
be slightly buggy.

Compile the programs:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
Then install them and their documentation:

make install

90

Installing Sed-4.0.7

Estimated build time: 0.
Estimated required disk space: 5.

2 SBU
2 MB

Contents of Sed

sed is a stream editor. A stream editor is used to perform basic text transformations on
an input stream (a file or input from a pipeline).

Installed program: Sed 260

Sed Installation Dependencies

Sed depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Texinfo.

Installation of Sed
Prepare Sed for compilation:
./configure --prefix=/tools
Compile the program:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
Theninstall it and its documentation:

make install

91

Installing Gettext-0.12.1

Estimated build time: 7.2 SBU
Estimated required disk space: 55 MB

Contents of Gettext

The Gettext package is used for internationalization and |localization. Programs can be
compiled with Native Language Support (NLS) which enable them to output messages
in the user's native language.

Installed programs: autopoint, config.charset, config.rpath, gettext, gettextize,
hostname, msgattrib, msgcat, msgcmp, msgcomm, msgconv, msgen, msgexec,

msgfilter, msgfmt, msggrep, msginit, msgmerge, msgunfmt, msgunig, ngettext,
project-id, team-address, trigger, urlget, user-email and xgettext

Installed libraries: libasprintf[a,so], libgettextlib[a,so], libgettextpo[a,so] and
libgettextsrc[a,so]

Gettext Installation Dependencies

Gettext depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc,
Grep, Make, Sed.

Installation of Gettext
Prepare Gettext for compilation:
./configure --prefix=/tools
Compile the programs:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. However, the Gettext test suite herein Chapter 5 is known to
experience failures under certain host conditions — for example, if it finds a Java
compiler on the host. The Gettext test suite takes a very long time to run and is not
considered critical. Therefore, we don't recommend running it here. Should you choose
torunit, the following command will do so:

make check

And install the package:

make install

92

Installing Ncurses-5.3

Estimated build time: 0.7 SBU
Estimated required disk space: 26 MB

Contents of Ncurses

The Ncurses package provides character and terminal handling libraries, including
panels and menus.

Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), reset
(link to tset), tack, tic, toe, tput and tset

Installed libraries: libcurses.[a,s0] (link to libncurses.[a,50]), libform.[a,s0],
libmenu.[a,s0], libncurses++.a, libncurses.[a,s0], libpandl.[a,s0]

Ncurses Installation Dependencies

Ncurses depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep,
Make, Sed.

Installation of Ncurses

Fix two minor things:

patch -Npl -1 ../ncurses-5.3-etip-2.patch
patch -Npl -1 ../ncurses-5.3-vsscanf.patch

Thefirst patch corrects the etip.h header file, and the second patch prevents some
compiler warnings being issued on the use of deprecated headers.

Now prepare Ncurses for compilation:

./configure --prefix=/tools --with-shared \
--without-debug --without-ada --enable-overwrite

The meaning of the configure options:

e --without-ada: Thistells Ncurses not to build its Ada bindings, even if an Ada
compiler isinstalled on the host. This must be done because once we enter the
chroot environment, Ada will no longer be available.

e ——enable-overwrite: Thistells Ncursesto install its header filesinto
/tools/include instead of /tools/include/ncurses to ensure that other
packages can find the Ncurses headers successfully.

Compile the programs and libraries:
make
Theninstall them and their documentation:

make install

93

Installing Patch-2.5.4

Estimated build time: 0. U
1.

1 SB
Estimated required disk space: 9 MB

Contents of Patch

The patch program modifies a file according to a patch file. A patch fileusually isa
list, created by the diff program, that contains instructions on how an original file
needs to be modified.

Installed program: Patch 255

Patch Installation Dependencies
Patch depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Patch
Prepare Patch for compilation:
CPPFLAGS=-D_GNU_SOURCE ./configure --prefix=/tools

The preprocessor flag -D_GNU_SOURCE is only needed on the PowerPC platform. On
other architectures you can leaveit out.

Compile the program:
make
Theninstall it and its documentation:

make install

94

Installing Tar-1.13.25

Estimated build time: 0.2 SBU
Estimated required disk space: 10 MB

Contents of Tar

Tar isan archiving program designed to store and extract files from an archivefile
known as atar file.

Installed programs: rmt and tar

Tar Installation Dependencies

Tar depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Sed.

Installation of Tar
Prepare Tar for compilation:
./configure --prefix=/tools
Compile the programs:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
Then install them and their documentation:

make install

95

Installing Texinfo-4.6

Estimated build time: 0.2 SBU
Estimated required disk space: 16 MB

Contents of Texinfo

The Texinfo package contains programs used for reading, writing and converting Info
documents, which provide system documentation.

Installed programs: info, infokey, install-info, makeinfo, texi2dvi and texindex

Texinfo Installation Dependencies

Texinfo depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed.

Installation of Texinfo
Prepare Texinfo for compilation:
./configure --prefix=/tools
Compile the programs:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
Then install them and their documentation:

make install

96

Installing Bash-2.05b

Estimated build time: 1.2 SBU
Estimated required disk space: 27 MB

Contents of Bash

bash is the Bourne-Again SHell, which is awidely used command interpreter on Unix
systems. The bash program reads from standard input (the keyboard). A user types
something and the program will evaluate what he has typed and do something with it,
like running a program.

Installed programs: bash, sh (link to bash) and bashbug

Bash Installation Dependencies

Bash depends on: Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Installation of Bash

Bash contains several known bugs. Fix these with the following patch:
patch -Npl -1 ../bash-2.05b-2_patch

Now prepare Bash for compilation:

./configure --prefix=/tools

Compile the program:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make tests

Theninstall it and its documentation:

make install

And make alink for the programs that use sh for a shell:
In -s bash /tools/bin/sh

97

Installing Util-linux-2.12

Estimated build time: 0.1 SBU
Estimated required disk space: 8 MB

Contents of Util-linux

The Util-linux package contains a number of miscellaneous utility programs. Some of
the more prominent utilities are used to mount, unmount, format, partition and manage
disk drives, open tty ports and fetch kernel messages.

Installed programs: agetty, arch, blockdev, cal, cfdisk, chkdupexe, cal, colcrt, colrm,
column, ctrlaltdel, cytune, ddate, dmesg, €lvtune, fdformat, fdisk, fsck.cramfs,
fsck.minix, getopt, hexdump, hwclock, ipcrm, ipcs, isosize, kill, line, logger, look,
losetup, mcookie, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount,
namei, parse.bash, parse.tcsh, pg, pivot_root, ramsize (link to rdev), raw, rdev,
readprofile, rename, renice, rev, rootflags (link to rdev), script, setfdprm, setsid,
setterm, sfdisk, swapoff (link to swapon), swapon, test.bash, test.tcsh, tundp, ul,
umount, vidmode (link to rdev), whereis and write

Util-linux Installation Dependencies

Util-linux depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed, Zlib.

Installation of Util-linux

Util-linux doesn't use the freshly installed headers and libraries from the /tools
directory. Thisisfixed by altering the configure script:

cp configure configure.backup
sed "s@/usr/include@/tools/include@g™” configure.backup > configure

Prepare Util-linux for compilation:
./configure

Compile some support routines:
make -C lib

And, sinceyou'll need only a couple of the utilities contained in this package, build just
those:

make -C mount mount umount
make -C text-utils more

Now copy these programs to the temporary tools directory:

cp mount/{,u}mount text-utils/more /tools/bin

98

Installing Perl-5.8.0

Estimated build time: 0.8 SBU
Estimated required disk space: 74 MB

Contents of Perl

The Perl package contains perl, the Practical Extraction and Report Language. Perl
combines some of the best features of C, sed, awk and sh into one powerful language.

Installed programs: a2p, c2ph, dprofpp, enc2xs, find2perl, h2ph, h2xs, libnetcfg, perl,
perl5.8.0 (link to perl), perlbug, perlce, perldoc, perlivp, piconv, pl2pm, pod2html,
pod2latex, pod2man, pod2text, pod2usage, podchecker, podselect, psed (link to s2p),
pstruct (link to c2ph), s2p, splain and xsubpp

Installed libraries: (too many to name)

Perl Installation Dependencies

Perl depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Sed.

Installation of Perl

First adapt some hard-wired paths to the C library:
patch -Npl -1 ../perl-5.8.0-1ibc-3.patch
And make sure some static extensions get built:

chmod ut+w hints/linux.sh
echo "static_ext="10 re Fcntl™" >> hints/linux.sh

Now prepare Perl for compilation:
./configure.gnu --prefix=/tools
Compile only the required tools:

make perl utilities

Then copy these tools and their libraries:

cp perl pod/pod2man /tools/bin
mkdir -p /tools/lib/perl5/5.8.0
cp -R lib/* /tools/1ib/per15/5.8.0

99

Stripping

The steps in this section are optional. If your LFS partition is rather small, you will be
glad to learn that you can throw away some unnecessary things. The executables and
libraries you have built so far contain about 130 MB of unneeded debugging symbols.
Remove those symboals like this:

strip --strip-unneeded /tools/{,s}bin/*
strip --strip-debug /tools/lib/*

Thefirst of the above commands will skip some twenty files, reporting that it doesn't
recognizetheir fileformat. Most of them are scripts instead of binaries.

Take care not to use --strip-unneeded on the libraries — they would be destroyed and
you would have to build Glibc all over again.

To save another couple of megabytes, you can throw away all the documentation:
rm -rf /tools/{,share/}{doc, info,man}

Y ou will now need to have at least 850 MB of free space on your LFS filesystem to be
ableto build and install Glibc in the next phase. If you can build and install Glibc, you
can build and install the rest too.

100

Part Ill - Building the LFS system

101

102

Chapter 6
Installing basic system software

Introduction

In this chapter we enter the building site, and start constructing our LFS systemin
earnest. That is, we chroot into our temporary mini Linux system, create some
auxiliary things, and then start installing all the packages, one by one.

Theinstallation of all this softwareis pretty straightforward, and you will probably
think it would be much shorter to give here the generic installation instructions and
explainin full only the installation of those packages that require an alternate method.
Although we agree with that, we neverthel ess choose to give the full instructions for
each and every package, smply to minimize the possibilities for mistakes.

If you plan to use compiler optimizations in this chapter, take alook at the
optimization hint at http://www. linuxfromscratch.org/hints/downloads/files/
optimization.txt. Compiler optimizations can make a program run slightly faster, but
they may also cause compilation difficulties and even problems when running the
program. If a package refuses to compile when using optimization, try to compile it
without optimization and see if the problem goes away. Even if the package does
compile when using optimization, thereis therisk it may have been compiled
incorrectly due to complex interactions between the code and build tools. In short, the
small potential gains achieved in using compiler optimization are generally outweighed
by therisk. First time builders of LFS are encouraged to build without custom
optimizations. Your system will still be very fast and very stable at the same time.

The order in which packages areinstalled in this chapter has to be strictly followed, to
ensure that no program gets a path referring to /tools hard-wired into it. For the same
reason, do not compile packages in parallel. Compiling in paralld may save you some
time (especially on dual-CPU machines), but it could result in a program containing a
hard-wired path to /tools, which will cause the program to stop working when that
directory is removed.

About debugging symbols
Most programs and libraries are, by default, compiled with debugging symbols
included (with gcc option -g).

When debugging a program or library that was compiled with debugging information
included, the debugger can give you not only memory addresses but also the names of
the routines and variables.

But the inclusion of these debugging symbols enlarges a program or library
significantly. To get an idea of the amount of space these symbols occupy, have alook
at the following:

103

e abash binary with debugging symbols: 1200 KB

e abash binary without debugging symbols: 480 KB

e Glibc and GCC files (/lib and /usr/lib) with debugging symbols: 87 MB
e Glibc and GCC files without debugging symbols: 16 MB

Sizes may vary alittle, depending on which compiler was used and which C library.
But when comparing programs with and without debugging symbols, the difference
will generally be a factor between 2 and 5.

As most people will probably never use a debugger on their system software, alot of
disk space can be regained by removing these symbols .

To remove debugging symbols from a binary (which must be an a.out or ELF binary),
runstrip --strip-debug filename. Wildcards can be used to treat multiple files (use
something like strip --strip-debug $LFS/tools/bin/*).

For your convenience, Chapter 9 includes one simple command to strip all debugging
symbols from all programs and libraries on your system. Additional information on
optimization can befound in the hint at http://ww_linuxfromscratch.org/hints/
downloads/files/optimization.txt.

Entering the chroot environment

It istimeto enter the chroot environment in order to begin installing the packages we
need. Before you can chroot, however, you need to become root, since only root can
execute the chroot command.

Just like earlier, ensure the LFS environment variable is set up properly by running
echo $LFS and ensuring it shows the path to your LFS partition's mount point, which is
/mnt/1fs if you followed our example.

Become root and run the following command to enter the chroot environment:

chroot $LFS /tools/bin/env -i \
HOME=/root TERM=$TERM PS1="\u:\w\$ " \
PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \
/tools/bin/bash --login

The -i option given to the env command will clear all variables of the chroot
environment. After that, only the HOME, TERM, PS1 and PATH variables are set
again. The TERM=$TERM construct will set the TERM variableinside chroot to the
same value as outside chroot; this variable is needed for programs likevim and less to
operate properly. If you need other variables present, such as CFLAGS or
CXXFLAGS, thisisagood placeto set them again.

From this point on theré's no need to use the LFS variable anymore, because
everything you do will be restricted to the LFS file system — since what the shell
thinksis 7 is actually the value of $LFS, which was passed to the chroot command.

104

Notice that /tools/bin comes last in the PATH. This means that a temporary tool will
not be used any more as soon asitsfina version isinstalled. Well, at least when the
shell doesn't remember the locations of executed binaries — for this reason hashing is
switched off a bit further on.

Y ou have to make sure all the commands in therest of this chapter and in the
following chapters are run from within the chroot environment. If you ever leave this
environment for any reason (rebooting for example), you must remember to again enter
chroot and mount the proc and devpts filesystems (discussed later) before continuing
with theinstallations.

Note that the bash prompt will say "I have no name!" Thisis normal, asthe
/etc/passwd file has not been created yet.

Changing ownership

Right now the /tools directory is owned by the user Ifs, a user that exists only on your
host system. Although you will probably want to delete the /tools directory once you
have finished your LFS system, you may want to keep it around, for exampleto build
more LFS systems. But if you keep the /tools directory asit is, you end up with files
owned by a user 1D without a corresponding account. This is dangerous because a user
account created later on could get this same user 1D and would suddenly own the
/tools directory and all thefiles therein, thus exposing these files to possible malicious
manipulation.

To avoid thisissue, you could add the Ifs user to your new LFS system later on when
creating the /etc/passwd file, taking care to assign it the same user and group I1Ds as
on your host system. Alternatively, you can (and the book assumes you do) assign the
contents of the /tools directory to user root by running the following command:

chown -R 0:0 /tools

The command uses "0:0" instead of "root:root”, because chown is unable to resolve the
name "root" until the password file has been created.

Creating directories

Let's now create some structurein our LFS file system. Let's create a directory tree.
Issuing the following commands will create a more or less standard tree:

mkdir -p /{bin,boot,dev/{pts,shm},etc/opt,home, lib,mnt,proc}
mkdir -p /{root,sbin,tmp,usr/local,var,opt}
for dirname in /usr /usr/local

do

mkdir $dirname/{bin,etc,include,lib,sbin,share,src}

In -s share/{man,doc, info} $dirname

mkdir $dirname/share/{dict,doc, info, locale,man}

mkdir $dirname/share/{nls,misc,terminfo,zoneinfo}

mkdir $dirname/share/man/man{1,2,3,4,5,6,7,8}

105

done

mkdir /var/{lock,log,mail,run,spool}

mkdir -p /var/{tmp,opt,cache,lib/misc,local}
mkdir /opt/{bin,doc,include, info}

mkdir -p /opt/{lib,man/man{1,2,3,4,5,6,7,8}}

Directories are, by default, created with permission mode 755, but thisisn't desirable
for all directories. We will make two changes: one to the home directory of root, and
another to the directories for temporary files.

chmod 0750 /root
chmod 1777 /tmp /var/tmp

Thefirst mode change ensures that not just anybody can enter the /root directory —
the same as anormal user would do with his or her home directory. The second mode
change makes sure that any user can writeto the /tmp and /var/tmp directories, but
cannot remove other users files from them. The latter is prohibited by the so-called
"sticky bit" — the highest bit in the 1777 bit mask.

FHS compliance note

We have based our directory tree on the FHS standard (available at
http://www.pathname.com/fhs/). Besides the above created tree this standard
stipulates the existence of /usr/local/games and /usr/share/games, but we don't much
like these for abase system. However, fedl free to make your system FHS-compliant.
Asto the structure of the /usr/local/share subdirectory, the FHS isn't precise, so we
created here the directories that we think are needed.

Mounting the proc and devpts file systems

In order for certain programs to function properly, the proc and devpts file systems
must be available within the chroot environment. A file system can be mounted as
many times and in as many places as you like, thus it's not a problem that thesefile
systems are already mounted on your host system — especially so because they are
virtual file systems.

The proc file system is the process information pseudo-filesystem that the kernel uses
to provide status information about the status of the system.

The proc file system is mounted on /proc by running the following command:
mount proc /proc -t proc

Y ou might get warning messages from the mount command, such as these:

warning: can"t open /etc/fstab: No such file or directory
not enough memory

106

Ignore these, they're just due to the fact that the system isn't installed completely yet
and some files are missing. The mount itself will be successful and that's all we care
about at this point.

The devpts file system was mentioned earlier and is now the most common way for
pseudo terminals (PTYs) to be implemented.

The devpts file system is mounted on /dev/pts by running:
mount devpts /dev/pts -t devpts
Should this command fail with an error to the effect of:

filesystem devpts not supported by kernel

Themost likely causeis that your host system's kernel was compiled without support
for the devpts file system. Y ou can check which file systems your kernel supports by
peeking into its internals with a command such as cat /proc/filesystens. If afile
system type named devfs is listed there, then well be able to work around the problem
by mounting the host's devfs file system on top of the new /dev structure which well
create later on in the "Creating devices (Makedev)" section. If devfs was not listed, do
not worry because thereis yet athird way to get PTY s working inside the chroot
environment. Well cover this shortly in the aforementioned Makedev section.

Remember, if for any reason you stop working on your LFS, and start again later, it's
important to check that these filesystems are still mounted inside the chroot
environment, otherwise problems are likely to occur.

Creating essential symlinks

Some programs hard-wire paths to programs which don't exist yet. In order to satisfy
these programs, we create a number of symbolic links which will be replaced by real
files throughout the course of this chapter when wereinstalling all the software.

In -s /tools/bin/{bash,cat,pwd,stty} /bin
In -s /tools/bin/perl /usr/bin

In -s /tools/lib/libgcc_s.so.1 /usr/lib
In -s bash /bin/sh

Creating the passwd and group files

In order for root to be ableto login and for the name "root" to be recognized, there
need to berelevant entriesin the /etc/passwd and /etc/group files.

107

Create the /etc/passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
EOF

The actual password for root (the "x" hereisjust a placeholder) will be set later.
Create the /etc/group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:
SyS:iXx:2:
kmem:x:3:
tty:x:4:
tape:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
Ip:x:9:
dialout:x:10:
audio:x:11:
EOF

The created groups aren't part of any standard — they are the groups that the
MAKEDEYV script in the next section uses. Besides the group "root", the LSB
(http://www. linuxbase.org) recommends only a group "bin", witha GID of 1, be
present. All other group names and GIDs can be chosen fregly by the user, as well-
written packages don't depend on GID numbers but use the group's name.

Lastly, were-login to the chroot environment. User name and group name resolution
will start working immediately after the /etc/passwd and /etc/group files are created,
because we installed a full Glibc in Chapter 5. Thiswill get rid of the "l have no
name!" prompt.

exec /tools/bin/bash --login +h

Note the use of the +h directive. Thistells bash not to useits internal path hashing.
Without this directive, bash would remember the paths to binaries it has executed.
Since we want to use our newly compiled binaries as soon as they are installed, we
turn off this function for the duration of this chapter.

108

Creating devices (Makedev-1.7)

Estimated build time: 0.1 SBU
Estimated required disk space: 50 KB

Contents of MAKEDEV

The MAKEDEYV script creates the static device nodes which usually reside in the /dev
directory. Detailed information about device nodes may befound in the
Documentation/devices.txt file under the Linux kernel sourcetree.

Installed script: MAKEDEV 250

MAKEDEYV Installation Dependencies
Make depends on: Bash, Coreutils.

Creating devices

Note that unpacking the MAKEDEV-1.7.bz2 file doesn't create a directory for you to cd
into, as the file contains only a shell script.

Install the MAKEDEV script:

bzcat MAKEDEV-1.7.bz2 > /dev/MAKEDEY
chmod 754 /dev/MAKEDEV

Run the script to create the device files:

cd /dev
-/MAKEDEV -v generic-nopty

The meaning of the arguments:
e -v: Thistellsthe script to run in verbose mode.

e generic-nopty: Thisinstructs MAKEDEV to create a generic selection of
commonly used device special files, except for the ptyXX and ttyX X range of
files. We don't need those files because we are going to use Unix98 PTYsvia
the devpts file system.

If it turns out that some special device zzz that you need is missing, try running
./MAKEDEV -v zzz. Alternatively, you may create devices via the mknod program.
Please refer to its man and info pages if you need more information.

Additionally, if you were unable to mount the devpts filesystem earlier in the
"Mounting the proc and devpts file systems" section, now is thetime to try the
alternatives. If your kernel supports the devfs file system, run the following command
to mount devfs:

mount -t devfs devfs /dev

109

This will mount the devfs file system over the top of the new static /dev structure. This
poses no problems, as the device nodes created are still present, they are just hidden by
the new devfs filesystem.

If this still doesn't work, the only option left is to use the MAKEDEV script to create
the ptyXX and ttyXX range of files that would otherwise not be needed. Ensure you
are still in the /dev directory then run ./MAKEDEV -v pty. The downside of thisis, we
are creating an extra 512 device special files which will not be needed when wefinally
boot into the finished LFS system.

110

Installing Linux-2.4.22 headers

Estimated build time: 0.1 SBU
Estimated required disk space: 186 MB

Contents of Linux

The Linux kernel is at the core of every Linux system. It's what makes Linux tick.
When a computer is turned on and boots a Linux system, the very first piece of Linux
software that gets loaded is the kernel. The kernel initializes the system's hardware
components: serial ports, paralle ports, sound cards, network cards, IDE controllers,
SCSI controllersand alot more. In a nutshell the kernel makes the hardware available
so that the software can run.

Installed files: the kernal and the kernel headers

Linux Installation Dependencies

Linux depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make,
Modutils, Perl, Sed.

Installation of the kernel headers

We won't be compiling a new kernel yet — well do that when we have finished the
installation of all the packages. But as some packages need the kernel header files,
we're going to unpack the kernel archive now, set it up and copy the header files so
they can be found by these packages.

It isimportant to note that the files in the kernel source directory are not owned by
root. Whenever you unpack a package as user root (like we do hereinside chroot), the
files end up having the user and group 1Ds of whatever they were on the packager's
computer. Thisisusually not a problem for any other package you install because you
remove the source tree after the installation. But the Linux kernel source treeis often
kept around for along time, so there's a chance that whatever user 1D the packager
used will be assigned to somebody on your machine and then that person would have
write access to the kernel source.

Inlight of this, you might want to run chown -R 0:0 on the linux-2.4.22 directory to
ensure all files are owned by user root.

Prepare for header installation:
make mrproper

This ensures that the kernel treeis absolutely clean. The kernel team recommends that
this command be issued prior to each kernel compilation. Y ou shouldn't rely on the
source tree being clean after untarring.

Create the include/linux/version.h file:

111

make include/linux/version.h

Create the platform-specific include/asm symlink:
make symlinks
Install the platform specific-header files:

cp -HR include/asm /usr/include
cp -R include/asm-generic /usr/include

Install the cross-platform kernel header files:
cp -R include/linux /usr/include

Thereare afew kernel header files which make use of the autoconf.h header file.
Since we do not yet configure the kernel, we need to create this file ourseves in order
to avoid compilation failures. Create an empty autoconf.h file:

touch /usr/include/linux/autoconf.h

Why we copy the kernel headers and don't symlink them

In the past it was common practice to symlink the /usr/include/{linux,asm}
directoriesto /usr/src/linux/include/{linux,asm}. This was a bad practice, asthe
following extract from a post by Linus Torvalds to the Linux Kernel Mailing List
points out:

I would suggest that people who compile new kernels should:

- not have a single symbolic link in sight (except the one that the
kernel build itself sets up, namely the "linux/include/asm™ symlink
that is only used for the internal kernel compile itself)

And yes, this is what I do. My /usr/src/linux still has the old 2.2.13
header files, even though 1 haven®t run a 2.2.13 kernel in a _loong_
time. But those headers were what Glibc was compiled against, so those
headers are what matches the library object files.

And this is actually what has been the suggested environment for at
least the last five years. I don"t know why the symlink business keeps
on living on, like a bad zombie. Pretty much every distribution still
has that broken symlink, and people still remember that the linux
sources should go into "/usr/src/linux™ even though that hasn®t been
true in a _loong_ time.

The essential part is where Linus states that the header files should be the ones which
Glibc was compiled against. These are the headers that should be used when you later
compile other packages, asthey are the ones that match the object-code library files.
By copying the headers, we ensure that they remain available if later you upgrade your
kernel.

112

Note, by the way, that it is perfectly all right to have the kernel sourcesin
/usr/src/linux, aslong as you don't have the Zusr/include/{linux,asm} symlinks.

113

Installing Man-pages-1.60

Estimated build time: 0.1 SBU
Estimated required disk space: 15 MB

Contents of Man-pages

The Man-pages package contains over 1200 manual pages. This documentation details
the C and C++ functions, describes afew important devicefiles and provides
documents which would otherwise be missing from other packages.

Installed files: various manual pages

Man-pages Installation Dependencies
Man depends on: Bash, Coreutils, Make.

Installation of Man-pages
Install Man-pages by running:

make install

114

Installing Glibc-2.3.2

Estimated build time: 12.3 SBU
Estimated required disk space: 784 MB

Contents of Glibc

Glibc isthe C library that provides the system calls and basic functions such as open,
malloc, printf, etc. The C library is used by all dynamically linked programs.

Installed programs: catchsegv, gencat, getconf, getent, glibcbug, iconv, iconvconfig,
Idconfig, I1dd, Iddlibc4, locale, localedef, mtrace, nscd, nscd_nischeck, pcprofiledump,
pt_chown, rpcgen, rpcinfo, sin, sprof, tzsdect, xtrace, zdump and zic

Installed libraries: 1d.so, libBrokenL ocale.[a,s0], libSegFault.so, libanl.[a,s0], libbsd-
compat.a, libc.[a,50], libc_nonshared.a, liberypt.[a,s0], libdl.[a,s0], libg.a, libieee.a,
libm.[a,s0], libmcheck.a, libmemusage.so, libnsl.a, libnss_compat.so, libnss_dns.so,
libnss _files.so, libnss_hesiod.so, libnss _nis.so, libnss_nisplus.so, libpcprofile.so,
libpthread.[a,s0], libresolv.[a,s0], librpcsvce.a, librt.[a,s0], libthread db.so and
libutil.[a,s0]

Glibc Installation Dependencies

Glibc depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep,
Make, Perl, Sed, Texinfo.

Glibc installation

The Glibc build system is very well self-contained and will install perfectly, even
though our compiler specs file and linker are still pointing at /tools. We cannot adjust
the specs and linker before the Glibe install, because the Glibc autoconf tests would
then give bogus results and thus defeat our goal of achieving a clean build.

F Thetest suite for Glibc in this section is considered critical.
Our adviceisto not skip it under any circumstance.

Before starting to build Glibc, remember to unpack the Glibc-linuxthreads again inside
theglibc-2.3.2 directory, and to unset any environment variables that override the
default optimization flags.

Though it is a harmless message, the install stage of Glibc will complain about the
absence of /etc/1d.so.conf. Fix this annoying little warning with:

touch /etc/ld.so.conf
Then apply the same patch we used previously:
patch -Npl -1 ../glibc-2.3.2-sscanf-1.patch

115

The Glibc documentation recommends building Glibc outside of the source directory
in a dedicated build directory:

mkdir ../glibc-build
cd ../glibc-build

Now prepare Glibc for compilation:

../glibc-2.3.2/configure --prefix=/usr \
--disable-profile --enable-add-ons \
--libexecdir=/usr/bin --with-headers=/usr/include

The meaning of the new configure options:

o —-libexecdir=/usr/bin: Thiswill cause the pt_chown program to beinstalled
in the /usr/bin directory.

e —-with-headers=/usr/include: This ensures that the kernd headersin
/usr/include are used for this build. If you don't pass this switch then the
headers from /tools/include are used which of courseis not ideal (although
they should be identical). Using this switch has the advantage that you will be
informed immediately should you have forgotten to install the kernel headers
into /usr/include.

Compile the package:
make
Test theresults:

make check

The test suite notes from the Section called Installing Glibc-2.3.2 in Chapter 5 are still
very much appropriate here. Be sureto refer back there should you have any doubts.

And install the package:

make install

The locales that can make your system respond in a different language weren't installed
by the above command. Do it with this:

make localedata/install-locales

An alternative to running the previous command is to install only those locales which
you need or want. This can be achieved using the localedef command. Information on
this can be found in the INSTALL fileintheglibc-2.3.2 tree. However, thereare a
number of locales that are essential for the tests of future packages to pass correctly.
Thefollowing instructions, in place of the install-locales command above, will install
the minimum set of locales necessary for the tests to run successfully:

mkdir -p /usr/lib/locale

localedef -i de DE -f 1S0-8859-1 de DE

localedef -i de DE@euro -f 1S0-8859-15 de DE@euro
localedef -1 en HK -f 1S0-8859-1 en HK

localedef -i en PH -f 1S0-8859-1 en PH

116

localedef -i en US -f 1S0-8859-1 en US

localedef -1 es MX -f 1S0-8859-1 es MX

localedef -1 fr_FR -f 1S0-8859-1 fr_FR

localedef -1 fr_FR@euro -f 1S0-8859-15 fr FR@euro
localedef -1 it IT -f 1S0-8859-1 it IT

localedef -i ja JP -f EUC-JP ja JP

Finally, build the linuxthreads man pages:
make -C ../glibc-2.3.2/linuxthreads/man

And install these pages:
make -C ../glibc-2.3.2/linuxthreads/man install

Configuring Glibc

We need to create the /etc/nsswitch.conf file, because, although Glibc provides
defaults when this file is missing or corrupt, the Glibc defaults don't work well with
networking. Also, our time zone needs to be set up.

Create a new file /etc/nsswitch.conf by running the following:
cat > /etc/nsswitch.conf << "EOF"
Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

publickey: files

hosts: files dns
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files

netgroup: db files

End /etc/nsswitch.conf

EOF

To find out what time zone you'rein, run the following script:
tzselect

When you've answered a few questions about your location, the script will output the
name of your time zone, something like ESTSEDT or Canada/Eastern. Then create the
/etc/localtime file by running:

cp --remove-destination /usr/share/zoneinfo/Canada/Eastern /etc/localtime

117

The meaning of the option:

e --remove-destination: Thisis needed to force removal of the already existing
symbolic link. The reason why we copy instead of symlink is to cover the
situation where /usr is on a separate partition. This could matter, for example,
when booted into single user mode.

Of coursg, instead of Canada/Eastern, fill in the name of the time zone that the
tzselect script gave you.

Configuring Dynamic Loader

By default, the dynamic loader (/lib/1d-1inux.so.2) searches through /1ib and
/usr/1ib for dynamic libraries that are needed by programs when you run them.
However, if there arelibrariesin directories other than /1ib and /usr/1ib, you need to
add them to the /etc/1d.so.conf filefor the dynamic loader to find them. Two
directories that are commonly known to contain additional libraries are
/usr/local/l1ib and /opt/1ib, so we add those directories to the dynamic |oader's
search path.

Create a new file /etc/1d.so.conf by running the following:
cat > /etc/ld.so.conf << "EOF"
Begin /etc/ld.so.conf

/usr/local/lib
/opt/lib

End /etc/1d.so.conf
EOF

Re-adjusting the toolchain

Now that the new C libraries have been installed, it's time to re-adjust our toolchain.
Well adjust it so that it will link any newly compiled program against the new C
libraries. Basically, this is the reverse of what wedid in the "locking in" stage in the
beginning of the previous chapter.

Thefirst thing to do is to adjust the linker. For this we retained the source and build
directories from the second pass over Binutils. Install the adjusted linker by running
the following from within the binutils-build directory:

make -C Id INSTALL=/tools/bin/install install

F If you somehow missed the earlier warning to retain the
Binutils source and build directories from the second passin
Chapter 5 or otherwise accidentally deleted them or just don't
have access to them, don't worry, all is not lost. Just ignore
the above command. The result will be that the next package,

118

Binutils, will link against the Glibc librariesin /tools rather
than /usr. Thisis not ideal, however, our testing has shown
that the resulting Binutils program binaries should be
identical.

From now on every compiled program will link only against the librariesin /usr/lib
and /1ib. The extra INSTALL=/tools/bin/install is needed because the Makefile
created during the second pass still contains the referenceto /usr/bin/install, which
we obviously haven't installed yet. Some host distributions contain aginstall
symbolic link which takes precedence in the Makefile and thus can cause a problem
here. The above command takes care of this aso.

Y ou can now remove the Binutils source and build directories.

The next thing to do is to amend our GCC specs file so that it points to the new
dynamic linker. Just like earlier on, we use a sed to accomplish this:

SPECFILE=/tools/lib/gcc-1ib/*/*/specs &&

sed -e "s@ /tools/lib/1d-linux.so.2@ /lib/1d-linux.so0.2@g" \
$SPECFILE > newspecfile &&

mv -f newspecfile $SPECFILE &&

unset SPECFILE

Again, cutting and pasting the above is recommended. And just like before, it is a good
idea to check the specs file to ensure the intended changes were actually made.

1 If you are working on a platform where the name of the
' dynamic linker is something other than Id-linux.so.2, you
must substitute Id-1inux.so.2 with the name of your
platform's dynamic linker in the above commands. Refer
back to the Section called Toolchain technical notesin
Chapter 5 if necessary.

A It isimperative at this point to stop and ensure that the basic
functions (compiling and linking) of the adjusted toolchain
are working as expected. For this we are going to perform a
simple sanity check:

echo "main(){}" > dummy.c
gcc dummy.c
readelf -1 a.out | grep ": /lib"

If everything is working correctly, there should be no errors,
and the output of the last command will be:

[Requesting program interpreter: /lib/ld-linux.so.2]

If you did not receive the output as shown above, or received
no output at all, then something is seriously wrong. Y ou will

119

120

need to investigate and retrace your steps to find out where
the problem is and correct it. Thereis no point in continuing
until thisis done. Most likely something went wrong with the
specs file amendment above. Note especially that /1ib now
appears as the prefix of our dynamic linker. Of course, if you
areworking on a platform where the name of the dynamic
linker is something other than Id-linux.so.2, then the output
will be dlightly different.

Onceyou are satisfied that all iswell, clean up the test files:

rm dummy.c a.out

Installing Binutils-2.14

Estimated build time: 1.4 SBU
Estimated required disk space: 167 MB

Contents of Binutils

Binutilsis a collection of software development tools containing a linker, assembler
and other tools to work with object files and archives.

Installed programs: addr2line, ar, as, c++filt, gprof, 1d, nm, objcopy, objdump, ranlib,
readelf, size, strings and strip

Installed libraries: libiberty.a, libbfd.[a,50] and libopcodes.[a,s0]

Binutils Installation Dependencies

Binutils depends on: Bash, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl,
Sed, Texinfo.

Installation of Binutils

Now is an appropriate time to verify that your pseudo terminals (PTY's) areworking
properly inside the chroot environment. We will again quickly check that everything is
set up correctly by performing a simple test:

expect -c "'spawn Is"

If you receive the message:

The system has no more ptys. Ask your system administrator to create more.

Y our chroot environment is not set up for proper PTY operation. In this case thereis
no point in running the test suites for Binutils and GCC until you are able to resolve
theissue. Pleaserefer back to the Section called Mounting the proc and devpts file
systems and the Section called Creating devices (Makedev-1.7) and perform the
recommended steps to fix the problem.

B Thetest suite for Binutils in this section is considered
critical. Our advice isto not skip it under any circumstances.

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting or modifying them when
building Binutils.

121

The Binutils documentation recommends building Binutils outside of the source
directory in a dedicated build directory:

mkdir ../binutils-build
cd ../binutils-build

Now prepare Binutils for compilation:

../binutils-2_14/configure \
--prefix=/usr --enable-shared

Compile the package:
make tooldir=/usr

Normally, the tooldir (the directory where the executables end up) is set to
$(exec_prefix)/$(target_alias), which expands into, for example, /usr/i686-pc-linux-
gnu. Since we only build for our own system, we don't need this target specific
directory in /usr. That setup would be used if the system was used to cross-compile
(for example compiling a package on an Intel machine that generates code that can be
executed on PowerPC machines).

Test theresults:
make check

The test suite notes from the Section called Installing Binutils-2.14 - Pass 2 in Chapter
5 are still very much appropriate here. Be sureto refer back there should you have any
doubts.

Install the package:

make tooldir=/usr install

Install the libiberty header file that is needed by some packages:
cp --/binutils-2.14/include/libiberty.h /usr/include

122

Installing GCC-3.3.1

Estimated build time: 11.7 SBU
Estimated required disk space: 294 MB

Contents of GCC

The GCC package contains the GNU compiler collection, including the C and C++
compilers.

Installed programs: c++, cc (link to gcc), ccl, cclplus, collect2, cpp, g++, gce, gecbug,
and gcov

Installed libraries: libgcc.a, libgec_eh.a, libgee_s.so, libstde++.[a,s0] and libsupc++.a

GCC Installation Dependencies

GCC depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, Gettext, Glibc,
Grep, Make, Perl, Sed, Texinfo.

Installation of GCC

F Thetest suite for GCC in this section is considered critical.
Our adviceisto not skip it under any circumstance.

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting or modifying them when
building GCC.

Thistime we will build both the C and the C++ compiler, so you'll have to unpack the
GCC-core and the GCC-g++ tarball — they will unfold into the same directory. You
should likewise extract the GCC-testsuite package. The full GCC package contains
even more compilers. Instructions for building these can be found at http://ww
-linuxfromscratch.org/blfs/view/stable/general/gcc.html.

patch -Npl -1 ../gcc-3.3.1-no_fixincludes-2.patch
patch -Npl -1 ../gcc-3.3.1-suppress-libiberty._patch

The second patch here suppresses the installation of libiberty from GCC, as we will
use the one provided by binutils instead. Be careful not to apply the GCC specs patch
from Chapter 5 here.

123

The GCC documentation recommends building GCC outside of the source directory in
a dedicated build directory:

mkdir ../gcc-build
cd ../gcc-build

Now prepare GCC for compilation:

../gcc-3.3.1/configure --prefix=/usr \
--enable-shared --enable-threads=posix \
--enable-__cxa _atexit --enable-clocale=gnu \
--enable-languages=c,c++

Compile the package:

make

Test the results, but don't stop at errors (you'll remember the few known ones):
make -k check

The test suite notes from the Section called Installing GCC-3.3.1 - Pass 2 in Chapter 5
are still very much appropriate here. Be sureto refer back there should you have any
doubts.

And install the package:
make install

Some packages expect the C PreProcessor to beinstalled in the /1ib directory. To
honor those packages, create this symlink:

In -s _./usr/bin/cpp /1ib

Many packages use the name cc to call the C compiler. To satisfy those packages,
create a symlink:

In -s gcc /usr/bin/cc

F At this point it is strongly recommended to repeat the sanity
check we performed earlier in this chapter. Refer back to the
Section called Re-adjusting the toolchain and repeat the
check. If the results are wrong, then most likely you
erroneously applied the GCC Specs patch from Chapter 5.

124

Installing Coreutils-5.0

Estimated build time: 0.9 SBU
Estimated required disk space: 69 MB

Contents of Coreutils
The Coreutils package contains a whole series of basic shell utilities.

Installed programs: basename, cat, chgrp, chmod, chown, chroot, cksum, comm, cp,
csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor,
false, fmt, fold, groups, head, hostid, hostname, id, install, join, kill, link, In, logname,
Is, md5sum, mkdir, mkfifo, mknod, mv, nice, nl, nohup, od, paste, pathchk, pinky, pr,
printenv, printf, ptx, pwd, readlink, rm, rmdir, seq, shalsum, shred, deep, sort, split,
stat, stty, su, sum, sync, tac, tail, tee, test, touch, tr, true, tsort, tty, uname, unexpand,
uniq, unlink, uptime, users, vdir, wc, who, whoami and yes

Coreutils Installation Dependencies

Coreutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Perl, Sed.

Installation of Coreutils

Normally the functionality of uname is somewhat broken, in that the -p switch always
returns "unknown". The following patch fixes this behaviour for Intel architectures:

patch -Npl -1 ../coreutils-5.0-uname.patch

We do not want Coreutilsto install its version of the hostname program, becauseit is
inferior to the version provided by Net-tools. Prevent its installation by applying a
patch:

patch -Npl -1 ../coreutils-5.0-hostname-2.patch
Now prepare Coreutils for compilation:

./configure --prefix=/usr

Compile the package:

make

The su program from Coreutils wasn't installed in Chapter 5 because it needed root
privilege to do so. Were going to need it in a few moments for the test suite. Therefore
we work around the problem by installing it now:

make install-root

This package has a test suite available which can perform a number of checks to ensure
it built correctly. However, this particular test suite makes some assumptions with

125

regards to the presence of non-root users and groups that don't apply this early into the
LFS build. We therefore create a dummy system user and two dummy groups to allow
the tests to run properly. Should you choose not to run the test suite, skip down to
"Install the package". The following commands will prepare us for the test suite.
Create two dummy groups and a dummy user name:

echo "dummyl:x:1000" >> /etc/group
echo "dummy2:x:1001:dummy™ >> /etc/group
echo "dummy:x:1000:1000:::/bin/bash"™ >> /etc/passwd

Some tests are meant to run as root:

make check-root

Theremainder of the tests arerun as the dummy user:
su dummy -c "make RUN_EXPENSIVE_TESTS=yes check™
Remove the dummy groups and user name:

sed -i.bak "/dummy/d* /etc/passwd /etc/group
Install the package:

make install

And move some programs to their proper locations:

mv /usr/bin/{basename,cat,chgrp,chmod,chown,cp,dd,df} /bin
mv /usr/bin/{dir,dircolors,du,date,echo,false,head} /bin
mv /usr/bin/{install, In, Is,mkdir,mkfifo,mknod,mv,pwd} /bin
mv /usr/bin/{rm,rmdir,shred,sync,sleep,stty,su,test} /bin
mv /usr/bin/{touch, true,uname,vdir} /bin

mv /usr/bin/chroot /usr/sbin

Finally, create a few necessary symlinks:

In -s test /bin/[
In -s ../../bin/install /usr/bin

126

Installing Zlib-1.1.4

Estimated build time: 0.
Estimated required disk space: 1.

1 SBU
5 MB

Contents of Zlib

The Zlib package contains the libz library, which is used by some programs for its
compression and uncompression functions.

Installed libraries: libz[a,s0]

Zlib Installation Dependencies
Zlib depends on: Binutils, Coreutils, GCC, Glibc, Make, Sed.

Installation of Zlib

Zlib has a potential buffer overflow in its gzprintf() function, that, though difficult to
take advantage of, should be taken care of by applying this patch:

patch -Npl -1 ../zlib-1.1_4-vsnprintf._patch
Now prepare Zlib for compilation:
./configure --prefix=/usr --shared

Note: Zlib is known to build its shared library incorrectly if a CFLAGS is specified in
the environment. If you are using your own CFLAGS variables, ensure you add the -
fPI C directive during this stage, and remove it afterwards.

Compile the package:

make

Install the shared libraries:

make install

Now also build the non-shared libraries:

make clean
./configure --prefix=/usr
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make test

And install the package:

make install

127

The shared Zlib library should beinstalled in the /1ib directory. That way, in the event
that you must boot without the Zusr directory, vital system programs will still have
access to the library:

mv /usr/lib/1ibz.so.* /lib

The /usr/lib/libz_so symlink islinked to a file which no longer exists, because we
moved it. Create a symbolic link to the new location of the library:

In -sft ../../1ib/libz.so.1 /usr/lib/libz.so

Zlib does not install its manual page. Issue the following command to install this
documentation:

cp zlib.3 /usr/share/man/man3

128

Installing Lfs-Utils-0.3

Estimated build time: 0.
Estimated required disk space: 1.

1 SBU
1 MB

Contents of Lfs-Utils

The Lfs-Utils package contains some miscel laneous programs used by various
packages, but are not large enough to warrant their own individual package.

Installed programs: mktemp, tempfile, http-get and iana-net
Installed files: protocols, services

Lfs-Utils Installation Dependencies
(No dependencies checked yet.)

Installation of Lfs-Utils

Compile the package:

make

Andinstall it:

make install

Now copy two supporting files included in the Lfs-Utils tarball to their destination:
cp etc/{services,protocols} /etc

The 7etc/services fileis used to resolve service numbers to human-readable names,
and the /etc/protocols does the samefor protocol numbers.

129

Installing Findutils-4.1.20

Estimated build time: 0.
Estimated required disk space: 7.

2 SBU
5 MB

Contents of Findutils

The Findutils package contains programs to find files, either on-the-fly (by doing alive
recursive search through directories and only showing files that match the
specifications) or by searching through a database.

Installed programs: bigram, code, find, frcode, locate, updatedb and xargs

Findutils Installation Dependencies

Findutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Installing Findutils
Prepare Findutils for compilation:
-/configure --prefix=/usr --libexecdir=/usr/bin

By default, the location of the updatedb database isin Zusr/var. To make the location
of /var/lib/misc/locatedb file FHS compliant, pass the --local statedir=/var/lib/misc
option to configure.

Compile the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
And install the package:

make install

130

Installing Gawk-3.1.3

Estimated build time: 0.2 SBU
Estimated required disk space: 17 MB

Contents of Gawk
Gawk is an awk implementation that is used to manipulate text files.

Installed programs: awk (link to gawk), gawk, gawk-3.1.3, grcat, igawk, pgawk,
pgawk-3.1.3 and pwcat

Gawk Installation Dependencies

Gawk depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Installation of Gawk
First apply a patch to fix the following issues:

e Gawk's default location for some of its executablesis $prefix/libexec/awk.
This location doesn't comply with the FHS, which never even mentions a
directory called libexec. The patch makes it possible to pass a --libexecdir
switch to the configure script, so that we can use a more appropriate location
for the grcat and pwcat binaries: /usr/bin.

o Gawk's default data directory is $prefix/share/awk. But package-specific
directories should be named using the package name and version number (for
example: gawk-7.7.2.) and not simply the package name, as there may be
different versions of a packageinstalled on the system. The patch changes the
name of the data directory to the correct $prefix/share/gawk-3.1.3.

e The patch also ensures that this data directory, including its contents, is
removed on a make uninstall.

patch -Npl -1 ../gawk-3.1.3-libexecdir.patch
Now prepare Gawk for compilation:

-/configure --prefix=/usr --libexecdir=/usr/bin
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

131

And install the package:

make install

132

Installing Ncurses-5.3

Estimated build time: 0.6 SBU
Estimated required disk space: 27 MB

Contents of Ncurses

The Ncurses package provides character and terminal handling libraries, including
panedls and menus.

Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), reset
(link to tset), tack, tic, toe, tput and tset

Installed libraries: libcurses.[a,50] (link to libncurses.[a,50]), libform.[a,s0],
libmenu.[a,s0], libncurses++.a, libncurses.[a,s0], libpanel.[a,s0]

Ncurses Installation Dependencies

Ncurses depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep,
Make, Sed.

Installation of Ncurses
First fix two tiny bugs:

patch -Npl -1 ../ncurses-5.3-etip-2.patch
patch -Npl -1 ../ncurses-5.3-vsscanf.patch

Thefirst patch corrects the etip.h header file, and the second patch prevents some
compiler warnings on the use of deprecated headers.

Now prepare Ncurses for compilation:

./configure --prefix=/usr --with-shared \
--without-debug

Compile the package:

make

Install the package:

make install

Give the Ncurses libraries execute permissions:
chmod 755 /usr/lib/*.5.3

And fix alibrary that shouldn't be executable:

chmod 644 /usr/lib/libncurses++.a

133

Movethe libraries to the /lib directory, where they're expected to reside:
mv /usr/lib/libncurses.so.5* /lib

Since the libraries have been moved to /lib, afew symlinks are currently pointing
towards non-existing files. Recreate those symlinks:

In -st ../../1ib/libncurses.so.5 Zusr/lib/libncurses.so
In -st libncurses.so Zusr/lib/libcurses.so

134

Installing Vim-6.2

Estimated build time: 0.4 SBU
Estimated required disk space: 34 MB

Alternatives to Vim

If you prefer another editor — like Emacs, Joe, or Nano — to Vim, have alook at
http://www. linuxfromscratch.org/blfs/view/stable/postlfs/editors.html for
suggested installation instructions.

Contents of Vim

The Vim package contains a configurable text editor built to enable efficient text
editing.

Installed programs: efm_filter.pl, efm_perl.pl, ex (link to vim), less.sh, mve.awk,
pltags.pl, ref, rview (link to vim), rvim (link to vim), shtags.pl, tcltags, vi (link to vim),
view (link to vim), vim, vim132, vim2html.pl, vimdiff (link to vim), vimm,
vimspell.sh, vimtutor and xxd

Vim Installation Dependencies

Vim depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Installation of Vim

Change the default locations of the vimrc and gvimrc filesto /etc.

echo "#define SYS VIMRC FILE "/etc/vimrc"" >> src/feature.h
echo "#define SYS_GVIMRC_FILE "/etc/gvimrc"® >> src/feature.h

Now prepare Vim for compilation:
./configure --prefix=/usr
Compile the package:

make
And install the package:

make install

Vim can run in old-fashioned vi mode by creating a symlink, which may be created
with the following command:

In -s vim /Zusr/bin/vi

135

If you plan to install the X Window system on your LFS system, you might want to re-
compile Vim after you haveinstalled X. Vim comes with a nice GUI version of the
editor which requires X and afew other libraries to beinstalled. For more information
read the Vim documentation.

Configuring Vim

By default, vim runsin vi compatible mode. Some people might like this, but we have
a high preference to run vim in vim mode (else we wouldn't have included vim in this
book, but the original vi). Create the /root/.vimrc by running the following:

cat > /root/.vimrc << "EOF"
" Begin /root/.vimrc

set nocompatible
set bs=2

" End /root/.vimrc
EOF

136

Installing M4-1.4

Estimated build time: 0.
3

1 SBU
Estimated required disk space: 3.0 M

B
B

Contents of M4

M4 isa macro processor. It copies input to output, expanding macros as it goes.
Macros are efther built-in or user-defined and can take any number of arguments.
Besides just doing macro expansion, m4 has built-in functions for including named
files, running Unix commands, doing integer arithmetic, manipulating text in various
ways, recursion, etc. The m4 program can be used either as a front-end to a compiler or
as amacro processor in its own right.

Installed program: M4 248

M4 Installation Dependencies

M4 depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Perl, Sed.

Installation of M4
Prepare M4 for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

And install the package:

make install

137

Installing Bison-1.875

Estimated build time: 0.6 SBU
Estimated required disk space: 10.6 MB

Contents of Bison

Bison is a parser generator, areplacement for yacc. Bison generates a program that
analyzes the structure of atext file.

Installed programs: bison and yacc
Installed library: liby.a

Bison Installation Dependencies

Bison depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, M4,
Make, Sed.

Installation of Bison

First we use a patch to bison, backported from CVS, which fixes a minor compilation
problem with some packages:

patch -Npl -1 ../bison-1.875-attribute._patch
Prepare Bison for compilation:

./configure --prefix=/usr

Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so (and
takes along time):

make check

And install the package:

make install

138

Installing Less-381

Estimated build time: 0. U
3

18
Estimated required disk space: 3.4 M

B
B

Contents of Less

Lessisafile pager, or text viewer. It displays the contents of afile, or stream, and has
the ability to scroll. Less has a few features not included in themore pager, such asthe
ability to scroll backwards.

Installed programs: less, lessecho and |esskey

Less Installation Dependencies

Less depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Installation of Less

Prepare Less for compilation:

./configure --prefix=/usr --bindir=/bin --sysconfdir=/etc
The meaning of the configure option:

o --sysconfdir=/etc: This option tells the programs created by the package to
look in /Zetc for their configuration files.

Compile the package:
make
And install it:

make install

139

Installing Groff-1.19

Estimated build time: 0.5 SBU
Estimated required disk space: 43 MB

Contents of Groff

The Groff package includes several text processing programs for text formatting. Groff
translates standard text and special commands into formatted output, such aswhat you
seein amanual page.

Installed programs: addftinfo, afmtodit, egn, eqn2graph, gegn (link to egn), grn,
groavi, groff, groffer, grog, grolbp, grolj4, grops, grotty, gtbl (link to thl), hpftodit,
indxbib, Ikbib, lookbib, mmroff, negn, nroff, pfbtops, pic, pic2graph, post-grohtml,
pre-grohtml, refer, soelim, thl, tfmtodit, troff and zsoelim (link to soelim)

Groff Installation Dependencies

Groff depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Sed.

Installation of Groff

Groff expects the environment variable PAGE to contain the default paper size. For
those in the United States, the command below is appropriate. If you live elsewhere,
you may want to change PAGE=letter to PAGE=A4.

Prepare Groff for compilation:
PAGE=letter ./configure --prefix=/usr
Compile the package:

make

And install it:

make install

Some documentation programs, such as xman, will not work work properly without the
following symlinks:

In -s soelim /usr/bin/zsoelim
In -s egn /usr/bin/gegn
In -s tbl /usr/bin/gtbl

140

Installing Sed-4.0.7

Estimated build time: 0.
Estimated required disk space: 5.

2 SBU
2 MB

Contents of Sed

sed is a stream editor. A stream editor is used to perform basic text transformations on
an input stream (afile or input from a pipeline).

Installed program: Sed 260

Sed Installation Dependencies

Sed depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Texinfo.

Installation of Sed

Prepare Sed for compilation:

./configure --prefix=/usr --bindir=/bin
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

And install the package:

make install

141

Installing Flex-2.5.4a

Estimated build time: 0. U
3

18
Estimated required disk space: 3.4 M

B
B

Contents of Flex

The Flex package is used to generate programs which recognize patternsin text.
Installed programs: flex, flex++ (link to flex) and lex

Installed library: libfl.a

Flex Installation Dependencies

Flex depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc,
Grep, M4, Make, Sed.

Installation of Flex
Prepare Flex for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make bigcheck
And install the package:
make install

There are some packages that expect to find the Lex library in /usr/lib. Create a
symlink to account for this:

In -s libfl.a /usr/lib/libl.a

142

A few programs don't know about flex yet and try to run its predecessor lex. To
support those programs, create a shell script named lex that calls flex in Lex
emulation mode:

cat > /usr/bin/lex << "EOF"
#1/bin/sh
Begin /usr/bin/lex

exec /usr/bin/flex -1 "$@"
End Zusr/bin/lex

EOF
chmod 755 /usr/bin/lex

143

Installing Gettext-0.12.1

Estimated build time: 6.9 SBU
Estimated required disk space: 55 MB

Contents of Gettext

The Gettext package is used for internationalization and |localization. Programs can be
compiled with Native Language Support (NLS) which enable them to output messages
in the user's native language.

Installed programs: autopoint, config.charset, config.rpath, gettext, gettextize,
hostname, msgattrib, msgcat, msgcmp, msgcomm, msgconv, msgen, msgexec,

msgfilter, msgfmt, msggrep, msginit, msgmerge, msgunfmt, msgunig, ngettext,
project-id, team-address, trigger, urlget, user-email and xgettext

Installed libraries: libasprintf[a,so], libgettextlib[a,so], libgettextpo[a,so] and
libgettextsrc[a,so]

Gettext Installation Dependencies

Gettext depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc,
Grep, Make, Sed.

Installation of Gettext
Prepare Gettext for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so (and
takes a very long time):

make check

And install the package:

make install

144

Installing Net-tools-1.60

Estimated build time: 0. U
9

18
Estimated required disk space: 9.4 M

B
B

Contents of Net-tools

The Net-tools package contains a collection of programs which form the base of Linux
networking.

Installed programs: arp, dnsdomainname (link to hostname), domainname (link to
hostname), hostname, ifconfig, nameif, netstat, nisdomainname (link to hostname),
plipconfig, rarp, route, sattach and ypdomainname (link to hostname)

Net-tools Installation Dependencies
Net-tools depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make.

Installation of Net-tools

If you don't know what to answer to all the questions asked during the make config
phase below, then just accept the defaults. Thiswill bejust finein the majority of
cases. What you're asked hereis a bunch of questions about which network protocols
you've enabled in your kernel. The default answers will enable the tools from this
package to work with the most common protocols: TCP, PPP, and several others. You
still need to actually enable these protocols in the kernel — what you do hereis merely
telling the package to include support for those protocolsin its programs, but it's up to
the kernel to make the protocols available.

First fix asmall syntax problem in the sources of the mii-tool program:
patch -Npl -1 ../net-tools-1.60-miitool-gcc33-1.patch

Now prepare Net-tools for compilation with:

make config

If you intend to accept the default settings, you may skip the questions generated by
make config by runningyes " | make config instead.

Compile the package:

make

145

And install it:

make update

146

Installing Inetutils-1.4.2

Estimated build time: 0.2 SBU
Estimated required disk space: 11 MB

Contents of Inetutils
The I netutils package contains network clients and servers.
Installed programs: ftp, ping, rcp, rlogin, rsh, talk, telnet and tftp

Inetutils Installation Dependencies

Inetutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Installation of Inetutils
Prepare Inetutils for compilation:

./configure --prefix=/usr --disable-syslogd \
--libexecdir=/usr/sbin --disable-logger \
--sysconfdir=/etc --localstatedir=/var \
--disable-whois --disable-servers

The meaning of the configure options:

e --disable-syslogd: This option prevents inetutils from installing the System
Log Daemon, which isinstalled with the Sysklogd package.

o --disable-logger: This option prevents inetutils from installing the logger
program, which is used by scripts to pass messages to the System Log
Daemon. We do not install it because Util-linux installs a better version later.

e --disable-whois: This option disables the building of the inetutils whois
client, which is woefully out of date. Instructions for a better whois client are
in the BLFS book.

e --disable-servers: This disables theinstallation of the various network
serversincluded as part of the Inetutils package. These servers are deemed not
appropriatein a basic LFS system. Some are insecure by nature and are only
considered safe on trusted networks. More information can be found at
http://ww.linuxfromscratch.org/blfs/view/stable/basicnet/inetutils

-html. Note that better replacements are available for many of these servers.
Compile the package:

make

147

Install it:
make install

And move the ping program to its proper place:
mv /usr/bin/ping /bin

148

Installing Perl-5.8.0

Estimated build time: 2.9 SBU
Estimated required disk space: 143 MB

Contents of Perl

The Perl package contains perl, the Practical Extraction and Report Language. Perl
combines some of the best features of C, sed, awk and sh into one powerful language.

Installed programs: a2p, c2ph, dprofpp, enc2xs, find2perl, h2ph, h2xs, libnetcfg, perl,
perl5.8.0 (link to perl), perlbug, perlcc, perldoc, perlivp, piconv, pl2pm, pod2html,
pod2latex, pod2man, pod2text, pod2usage, podchecker, podselect, psed (link to s2p),
pstruct (link to c2ph), s2p, splain and xsubpp

Installed libraries: (too many to name)

Perl Installation Dependencies

Perl depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Sed.

Installation of Perl
Prepare Perl for compilation:
-/configure.gnu --prefix=/usr

If you want more control over the way Perl setsitself up to be built, you can run the
interactive Configure script instead and modify the way Perl is built. If you think you
can live with the (sensible) defaults Perl auto-detects, then just use the command listed
above.

Compile the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, you first haveto creste a basic
/etc/hosts file, needed by a couple of tests to resolve the name local host:

echo "127.0.0.1 localhost $(hostname)" > /etc/hosts
Now run thetests, if you wish:

make test

And install the package:

make install

149

Installing Texinfo-4.6

Estimated build time: 0.2 SBU
Estimated required disk space: 17 MB

Contents of Texinfo

The Texinfo package contains programs used for reading, writing and converting Info
documents, which provide system documentation.

Installed programs: info, infokey, install-info, makeinfo, texi2dvi and texindex

Texinfo Installation Dependencies

Texinfo depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed.

Installation of Texinfo
Prepare Texinfo for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

Install the package:

make install

And optionally install the components belonging in aTeX installation:
make TEXMF=/usr/share/texmf install-tex

The meaning of the make parameter:

e TEXMF=/usr/share/texmf: The TEXMF makefile variable holds the |ocation of
theroot of your TeX treeif, for example, you plan to install a TeX package
later on.

150

Installing Autoconf-2.57

Estimated build time: U

2.9 SB
Estimated required disk space: 7.7 MB

Contents of Autoconf
Autoconf produces shell scripts which automatically configure source code.

Installed programs: autoconf, autoheader, automdte, autoreconf, autoscan, autoupdate
and ifnames

Autoconf Installation Dependencies
Autoconf depends on: Bash, Coreutils, Diffutils, Grep, M4, Make, Perl, Sed.

Installation of Autoconf
Prepare Autoconf for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

And install the package:

make install

151

Installing Automake-1.7.6

Estimated build time:
Estimated required disk space:

5.3 SBU
6.8 MB

Contents of Automake
Automake generates Makefilein files, intended for use with Autoconf.

Installed programs: acinstall, aclocal, aclocal-1.7, automake, automake-1.7, compile,
config.guess, config.sub, depcomp, disp-comp, install-sh, mdate-sh, missing,
mkinstalldirs, py-compile, ylwrap

Automake Installation Dependencies

Automake depends on: Autaconf, Bash, Coreutils, Diffutils, Grep, M4, Make, Perl,
Sed.

Installation of Automake
Prepare Automake for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

Install the package:

make install

And create a necessary symboalic link:

In -s automake-1.7 /usr/share/automake

152

Installing Bash-2.05b

Estimated build time: 1.2 SBU
Estimated required disk space: 27 MB

Contents of Bash

bash is the Bourne-Again SHell, which is awidely used command interpreter on Unix
systems. The bash program reads from standard input (the keyboard). A user types
something and the program will evaluate what he has typed and do something with it,
like running a program.

Installed programs: bash, sh (link to bash) and bashbug

Bash Installation Dependencies

Bash depends on: Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Installation of Bash

Bash has a number of bugsin it that causeit to not behave the way it is expected at
times. Fix this behaviour with the following patch:

patch -Npl -1 ../bash-2.05b-2_patch
Prepare Bash for compilation:

./configure --prefix=/usr --bindir=/bin
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make tests

Install the package:

make install

And reload the newly compiled bash program:

exec /bin/bash --login +h

153

Installing File-4.04

Estimated build time: 0.
6

1 SBU
Estimated required disk space: 6.3

SB
MB

Contents of File

Fileis a utility used to determine file types.
Installed program: File 228

Installed library: libmagic.[a,s0]

File Installation Dependencies

File depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed,
Zlib.

Installation of File
Prepare File for compilation:
./configure --prefix=/usr
Compile the package:

make

And install it:

make install

154

Installing Libtool-1.5

Estimated build time: 1.5 SBU
Estimated required disk space: 20 MB

Contents of Libtool

GNU libtool is ageneric library support script. Libtool hides the complexity of using
shared libraries behind a consistent, portable interface.

Installed programs: libtool and libtoolize
Installed libraries: libltdl.[a,s0].

Libtool Installation Dependencies
Libtool depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Libtool
Prepare Libtool for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

And install the package:

make install

155

Installing Bzip2-1.0.2

Estimated build time: 0.
3

1 SBU
Estimated required disk space: 3.0

SB
MB

Contents of Bzip2

Bzip2 is a block-sorting file compressor which generally achieves a better compression
than the traditional gzip does.

Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp, bzdiff,
bzegrep, bzfgrep, bzgrep, bzip2, bzip2recover, bzless and bzmore

Installed libraries: libbz2.a, libbz2.so (link to libbz2.50.1.0), libbz2.50.1.0 (link to
libbz2.50.1.0.2) and libbz2.50.1.0.2

Bzip2 Installation Dependencies
Bzip2 depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make.

Installation of Bzip2
Prepare Bzip2 for compilation with:

make -f Makefile-libbz2 so
make clean

The -f flag will cause Bzip2 to be built using a different Makefile file, in this case the
Makefile-libbz2_so file, which creates a dynamic libbz2.so library and links the
Bzip2 utilities against it.

Compile the package:

make

Install it:

make install

156

And install the shared bzip2 binary into the /bin directory, then make some necessary
symbolic links, and clean up:

cp bzip2-shared /bin/bzip2

cp -a libbz2.so* /lib

In -s ../../1ib/libbz2.s0.1.0 /usr/lib/libbz2.so
rm /usr/bin/{bunzip2,bzcat,bzip2}

mv /usr/bin/{bzip2recover,bzless,bzmore} /bin

In -s bzip2 /bin/bunzip2

In -s bzip2 /bin/bzcat

157

Installing Diffutils-2.8.1

Estimated build time: 0.
Estimated required disk space: 7.

1 SBU
5 MB

Contents of Diffutils

The programs from this package show you the differences between two files or
directories. It's most common use is to create software patches.

Installed programs: cmp, diff, diff3 and sdiff

Diffutils Installation Dependencies

Diffutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Installation of Diffutils
Prepare Diffutils for compilation:
./configure --prefix=/usr
Compile the package:

make

And install it:

make install

158

Installing Ed-0.2

Estimated build time: 0.1 SBU
Estimated required disk space: 3.1 MB

Contents of Ed
GNU ed is an 8-hit clean, POSIX-compliant line editor.
Installed programs: ed and red (link to ed)

Ed Installation Dependencies
Ed depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Ed

- Ed isn't something which many people use. It'sinstalled here
becauseit can be used by the patch program if you encounter
an ed-based patch file. This happens rardly because diff-
based patches are preferred these days.

Ed normally uses the mktemp function to create temporary files in /tmp, but this
function contains a vulnerability (see the section on Temporary Filesin
http://en.tldp.org/HOWTO/Secure-Programs-HOWTO/avoid-race.html). The following
patch makes Ed use mkstemp instead, which is the recommended way to create
temporary files.

Apply the patch:

patch -Npl -1 ../ed-0.2-mkstemp.patch
Now prepare Ed for compilation:
./configure --prefix=/usr

Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

159

Install the package:
make install

And move the programs to the /bin directory, so they can be used in the event that the
/usr partition is unavailable.

mv /usr/bin/{ed,red} /bin

160

Installing Kbd-1.08

Estimated build time: 0.1 SBU
Estimated required disk space: 12 MB

Contents of Kbd
Kbd contains keytable files and keyboard utilities.

Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, getunimap,
kbd_mode, kbdrate, loadkeys, loadunimap, mapscrn, openvt, psfaddtable (link to
psfxtable), psfgettable (link to psfxtable), psfstriptable (link to psfxtable), psfxtable,
resizecons, setfont, setkeycodes, setleds, setlogcons, setmetamode, setvesablank,
showconsol efont, showkey, unicode_start and unicode_stop

Kbd Installation Dependencies

Kbd depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Flex, GCC, Gettext, Glibc,
Grep, Gzip, M4, Make, Sed.

Installation of Kbd

By default some of Kbd's utilities (setlogcons, setvesablank and getunimap) are not
installed. First enable the compilation of these utilities:

patch -Npl -1 ../kbd-1.08-more-programs.patch
Now prepare Kbd for compilation:

./configure

Compile the package:

make

And install it:

make install

161

Installing E2fsprogs-1.34

Estimated build time: 0.6 SBU
Estimated required disk space: 48.4 MB

Contents of E2fsprogs

E2fsprogs provides the filesystem utilities for use with the ext2 filesystem. It also
supports the ext3 filesystem with journaling support.

Installed programs: badblocks, blkid, chattr, compile_et, debugfs, dumpe2fs, e2fsck,
e2image, €2labd, findfs, fsck, fsck.ext2, fsck.ext3, logsave, Isattr, mk_cmds, mke2fs,
mkfs.ext2, mkfs.ext3, mklost+found, resize2fs, tune2fs and uuidgen.

Installed libraries: libblkid.[a,s0], libcom_err.[a,s0], libe2p.[a,s0], libext2fs.[a,50],
libss.[a,50] and libuuid.[a,s0]

E2fsprogs Installation Dependencies

E2fsprogs depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Glibc,
Grep, Make, Sed, Texinfo.

Installation of E2fsprogs

It is recommended to build E2fsprogs outside of the source tree:

mkdir ../e2fsprogs-build
cd ../e2fsprogs-build

Prepare E2fsprogs for compilation:

. ./e2fsprogs-1.34/configure --prefix=/usr --with-root-prefix="" \
--enable-elf-shlibs

The meaning of the configure options:

e --with-root-prefix=""": Certain programs (such as the e2fsck program) are
considered essential programs. When, for example, /usr isn't mounted, these
essential program have to be available. They belong in directories like /1ib
and /sbin. If this option isn't passed to E2fsprogs's configure, the programs are
placed in the Zusr directory, which is not what we want.

e -—-enable-elf-shlibs: This creates the shared libraries which some programs
in this package make use of .

162

Compile the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

Install most of the package:

make install
And install also the shared libraries;

make install-libs

163

Installing Grep-2.5.1

Estimated build time: 0. U
5.

1 SB
Estimated required disk space: 8 MB

Contents of Grep
Grep is a program used to print lines from a file matching a specified pattern.
Installed programs: egrep (link to grep), fgrep (link to grep) and grep

Grep Installation Dependencies

Grep depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Make, Sed,
Texinfo.

Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/usr --bindir=/bin \
--with-included-regex

Compile the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
And install the package:

make install

164

Installing Grub-0.93

Estimated build time: 0.2 SBU
Estimated required disk space: 10 MB

Contents of Grub
The Grub package contains a bootloader.
Installed programs: grub, grub-install, grub-md5-crypt, grub-terminfo and mbchk

Grub Installation Dependencies

Grub depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Installation of Grub

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting them when building Grub.

First fix a compilation problem with GCC-3.3.1:
patch -Npl -1 ../grub-0.93-gcc33-1.patch
Now prepare Grub for compilation:

./configure --prefix=/usr

Compile the package:

make

And install it:

make install
mkdir /boot/grub
cp /usr/share/grub/i1386-pc/stage{1,2} /boot/grub

Replace i386-pc with whatever directory is appropriate for your hardware.

The 1386-pc directory also contains a number of *stagel 5 files, different ones for
different filesystems. Have alook at the ones available and copy the appropriate ones
to the /boot/grub directory. Most people will copy the e2fs_stagel_5 and/or
reiserfs_stagel 5 files.

165

Installing Gzip-1.3.5

Estimated build time: 0. U
2.

1 SB
Estimated required disk space: 6 MB

Contents of Gzip

The Gzip package contains programs to compress and decompress files using the
Lempel-Ziv coding (LZ77).

Installed programs: gunzip (link to gzip), gzexe, gzip, uncompress (link to gunzip),
zcat (link to gzip), zcmp, zdiff, zegrep, zfgrep, zforce, zgrep, zless, zmore and znew

Gzip Installation Dependencies
Gzip depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Gzip
Prepare Gzip for compilation:
./configure --prefix=/usr

The gzexe program has the location of the gzip binary hard-wired into it. Because we
later change the location of this latter binary, the following command assures that the
new location gets placed into the binary:

cp gzexe.in{, -backup}
sed "sU"BINDIR"%/bin%" gzexe.in.backup > gzexe.in

Compile the package:

make

Install the package:

make install

And move the programs to the /bin directory:

mv /usr/bin/gzip /bin

rm /usr/bin/{gunzip,zcat}

In -s gzip /bin/gunzip

In -s gzip /bin/zcat

In -s gunzip /bin/uncompress

166

Installing Man-1.5m2

Estimated build time: 0.1 SBU
Estimated required disk space: 1.9MB

Contents of Man
Man is a man pager.
Installed programs: apropos, makewhatis, man, man2dvi, man2html and whatis

Man Installation Dependencies
Man depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Sed.

Installation of Man
Well make three adjustments to the sources of Man.

Thefirst patch comments out the "MANPATH /usr/man” line in the man.conf fileto
prevent redundant results when using programs such aswhatis:

patch -Npl -1 ../man-1.5m2-manpath.patch

The second patch adds the -R option to the PAGER variable so that escape sequences
are handled properly:

patch -Npl -1 ../man-1.5m2-pager.patch

The third and last patch prevents a problem when man pages not formatted with more
than 80 columns are used in conjunction with recent releases of groff:

patch -Npl -1 ../man-1.5m2-80cols.patch
Now prepare Man for compilation:
./configure -default -confdir=/etc

The meaning of the configure options:

o -default: Thistells the configure script to select a sensible set of default
options. For example: only English man pages, no message catalogs, man not
suid, handle compressed man pages, compress cat pages, create cat pages
whenever the appropriate directory exists, follow FHS by putting cat pages
under /var/cache/man provided that that directory exists.

e -confdir=/etc: Thistells theman program to look for theman.conf
configuration filein the /etc directory.

Compile the package:

make

167

And install it:

make install

F If you wish to disable SGR escape sequences, you should
edit the man.conf file and add the -c argument to nroff.

You may want to also take a look at the BLFS page at http://ww . linuxfromscratch
.org/blfs/view/cvs/postlfs/compressdoc.html which deals with formatting and
compression issues for man pages.

168

Installing Make-3.80

Estimated build time: 0.
8

2 SBU
Estimated required disk space: 8.8

SB
MB

Contents of Make

Make determines, automatically, which pieces of alarge program need to be
recompiled and issues the commands to recompile them.

Installed program: Make 249

Make Installation Dependencies
Make depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Sed.

Installation of Make
Prepare Make for compilation:
./configure --prefix=/usr
Compile the package:

make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check
And install the package:

make install

169

Installing Modutils-2.4.25

Estimated build time: 0.
Estimated required disk space: 2.

1 SBU
9 MB

Contents of Modutils

The Modutils package contains programs that you can use to work with kernel
modules.

Installed programs: depmod, genksyms, insmod, insmod_ksymoops_clean, kallsyms
(link to insmod), kernelversion, ksyms (link to insmod), Ismod (link to insmod),
modinfo, modprobe (link to insmod) and rmmod (link to insmod)

Modutils Installation Dependencies

Modutils depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Flex, GCC, Glibc,
Grep, M4, Make, Sed.

Installation of Modutils
Prepare Modutils for compilation:
./configure

Compile the package:

make

Andinstall it:

make install

170

Installing Patch-2.5.4

Estimated build time: 0.
Estimated required disk space: 1.

1 SBU
9 MB

Contents of Patch

The patch program modifies a file according to a patch file. A patch fileusually isa
list, created by the diff program, that contains instructions on how an original file
needs to be modified.

Installed program: Patch 255

Patch Installation Dependencies
Patch depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Installation of Patch
Prepare Patch for compilation:
CPPFLAGS=-D_GNU_SOURCE ./configure --prefix=/usr

Again, the preprocessor flag -D_GNU_SOURCE is only needed on the PowerPC platform.
On ather architectures you can leave it out.

Compile the package:
make
And install it:

make install

171

Installing Procinfo-18

Estimated build time: 0.
0.

1 SBU
Estimated required disk space: 2 MB

Contents of Procinfo

The procinfo program gathers system data, such as memory usage and IRQ numbers,
from the /proc directory and formats this data in a meaningful way.

Installed programs: Isdev, procinfo and socklist

Procinfo Installation Dependencies
Procinfo depends on: Binutils, GCC, Glibc, Make, Ncurses.

Installation of Procinfo
Compile Procinfo:

make LDLIBS=-Incurses

The meaning of the make parameter:

e LDLIBS=-Incurses: Thistells Procinfo to usethe libncurses library instead of
the long-absolete libtermcap.

And install the package:

make install

172

Installing Procps-3.1.11

Estimated build time: 0. U
6.

1 SB
Estimated required disk space: 2 MB

Contents of Procps

The Procps package provides programs to monitor and halt system processes. Procps
gathers information about processes via the /proc directory.

Installed programs: free, kill, pgrep, pkill, pmap, ps, skill, snice, sysctl, tload, top,
uptime, vmstat, w and watch

Installed library: libproc.so

Procps Installation Dependencies
Procps depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, Ncurses.

Installation of Procps

First fix a problem that can crash w under certain locale settings:
patch -Npl -1 ../procps-3.1.11-locale-fix.patch

Now compile Procps:

make

Install it:

make install

And remove a spurious library link:

rm /lib/libproc.so

173

Installing Psmisc-21.3

Estimated build time:
Estimated required disk space:

N O

1 SBU
.2 MB

Contents of Psmisc
The Psmisc package contains three programs which help manage the /proc directory.
Installed programs: fuser, killall and pstree

Psmisc Installation Dependencies

Psmisc depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed.

Installation of Psmisc

Prepare Psmisc for compilation:

./configure --prefix=/usr --exec-prefix=/
The meaning of the configure option:

e —-exec-prefix=/: This causes the binaries to beinstalled in /bin and not in
/usr/bin. Asthe Psmisc programs are often used in bootscripts, they should be
available also when the Zusr filesystem isn't mounted.

Compile the package:
make

Andinstall it:

make install

By default Psmisc's pidof program isn't installed. Generally, thisisn't a problem
because we later install the Sysvinit package, which provides a better pidof program.
But if you're not going to use Sysvinit, you should complete the installation of Psmisc
by creating the following symlink:

In -s killall /bin/pidof

174

Installing Shadow-4.0.3

Estimated build time: 0.4 SBU
Estimated required disk space: 11 MB

Contents of Shadow
The Shadow package was created to strengthen the security of system passwords.

Installed programs: chage, chfn, chpasswd, chsh, dpasswd, expiry, faillog, gpasswd,
groupadd, groupdel, groupmod, groups, grpck, grpconv, grpuncony, lastlog, login,
logoutd, mkpasswd, newgrp, newusers, passwd, pwck, pwconv, pwunconv, sg (link to
newgrp), useradd, userdel, usermod, vigr (link to vipw) and vipw

Shadow Installation Dependencies

Shadow depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc,
Grep, Make, Sed.

Installation of Shadow

The login, getty and init programs (and some others) maintain a number of logfiles
to record who are and who were logged in to the system. These programs, however,
don't create these logfiles when they don't exist, so if you want this logging to occur
you will haveto create the files yourself. The Shadow package needs to detect these
filesin their proper place, so we create them now, with their proper permissions:

touch /var/run/utmp /var/log/{btmp,lastlog,wtmp}
chmod 644 /var/run/utmp /var/log/{btmp,lastlog,wtmp}

The /var/run/utmp filelists the users that are currently logged in, the /var/log/wtmp
file who were logged in and when. The /var/log/lastlog file shows for each user
when he or shelast logged in, and the /var/log/btmp lists the bad login attempts.

Shadow hard-wires the path to the passwd binary within the binary itself, but does this
the wrong way. If apasswd binary is not present before installing Shadow, the package
incorrectly assumes it is going to belocated at /bin/passwd, but then installsit in
/usr/bin/passwd. Thiswill lead to errors about not finding /bin/passwd. To work
around this bug, create a dummy passwd file, so that it gets hard-wired properly:

touch /usr/bin/passwd

The current Shadow suite has a problem that causes the newgrp command to fail. The
following patch (also appearing in Shadow's CV'S code) fixes this problem:

patch -Npl -1 ../shadow-4.0.3-newgrp-fix.patch

175

Now prepare Shadow for compilation:

./configure --prefix=/usr --libdir=/usr/lib --enable-shared
Compile the package:

make

Andinstall it:

make install

Shadow uses two files to configure authentication settings for the system. Install these
two config files:

cp etc/{limits, login.access} /etc

We want to change the password method to enable MDS5 passwords which are
theoretically more secure than the default "crypt" method and also allow password
lengths greater than 8 characters. We also need to change the old /var/spool/mai |
location for user mailboxes to the current location at /var/mail. We do this by
changing the relevant configuration file while copying it to its destination:

sed -e "sW/var/spool/mail%/var/mail%" \
-e "sY#MD5_CRYPT_ENAB.no%MD5_CRYPT_ENAB yes%" \
etc/login.defs.linux > /etc/login.defs

F Be extra careful when typing all of the above. It is probably
safer to cut-and-paste it rather than try and typeit all in.

According to the man page of vipw, avigr program should exist too. Since the
installation procedure doesn't create this program, create a symlink manually:

In -s vipw /usr/sbin/vigr

Asthe /bin/vipw symlink is redundant (and even pointing to a non-existent file),
remove it:

rm /bin/vipw

Now move the sg program to its proper place:

mv /bin/sg /usr/bin

And move Shadow's dynamic libraries to a more appropriate location:
mv /usr/lib/l1ib{shadow,misc}.so.0* /lib

As some packages expect to find the just-moved librariesin /usr/lib, create the
following symlinks:

In -sft ../../1ib/libshadow.so.0 Zusr/lib/1ibshadow.so
In -st ../../1ib/libmisc.s0.0 Zusr/lib/libmisc.so

176

Coreutils has already installed a groups program in /usr/bin. If you wish, you can
remove the one installed by Shadow:

rm /bin/groups

Configuring Shadow

This package contains utilities to modify users' passwords, add or delete users and
groups, and the like. Were not going to explain what 'password shadowing' means. A
full explanation can be found in the doc/HOWTO file within the unpacked Shadow source
tree. There's one thing to keep in mind if you decide to use Shadow support: programs
that need to verify passwords (for example xdm, ftp daemons, pop3 daemons) need to
be 'shadow-compliant’, that is they need to be able to work with shadowed passwords.

To enable shadowed passwords, run the following command:
/usr/sbin/pwconv

And to enable shadowed group passwords, run the following command:
/usr/sbin/grpconv

Under normal circumstances, you won't have created any passwords yet. However, if
returning to this section to enable shadowing, you should reset any current user
passwords with the passwd command or any group passwords with the gpasswd
command.

177

Installing Sysklogd-1.4.1

Estimated build time: U

0.1 SB
Estimated required disk space: 0.5 MB

Contents of Sysklogd

The Sysklogd package contains programs for recording system log messages, such as
those reported by the kernel.

Installed programs: klogd and syslogd

Sysklogd Installation Dependencies
Sysklogd depends on: Binutils, Coreutils, GCC, Glibc, Make.

Installation of Sysklogd
Compile Sysklogd:

make

Andinstall it:

make install

Configuring Sysklogd
Create a new file /etc/syslog.conf by running the following:

cat > /etc/syslog.conf << "EOF"
Begin /etc/syslog.conf

auth,authpriv.* -/var/log/auth. log
.;auth,authpriv.none -/var/log/sys.log
daemon.* -/var/log/daemon.log

kern.* -/var/log/kern.log

mail.* -/var/log/mail.log

user.* -/var/log/user.log

*.emerg *

End /etc/syslog.conf
EOF

178

Installing Sysvinit-2.85

Estimated build time:
Estimated required disk space:

0.1 SBU
0.9 MB

Contents of Sysvinit

The Sysvinit package contains programs to control the startup, running and shutdown
of al other programs.

Installed programs: halt, init, killall5, last, lastb (link to last), mesg, pidof (link to
killall5), poweroff (link to halt), reboot (link to halt), runlevel, shutdown, sulogin,
telinit (link to init), utmpdump and wall

Sysvinit Installation Dependencies
Sysvinit depends on: Binutils, Coreutils, GCC, Glibc, Make.

Installation of Sysvinit

When run levels are changed (for example, when halting the system), init sends the
TERM and KILL signals to the processes which it started. Init prints "Sending
processes the TERM signal” to the screen. This seems to imply that init is sending
these signals to all the currently running processes. To avoid this confusion, theinit.c
file can be modified, so that the sentence reads "Sending processes started by init the
TERM signal”.

Edit the halt message:

cp src/init.c{, -backup}
sed "s/Sending processes/Sending processes started by init/g® \
src/init.c.backup > src/init.c

Compile Sysvinit:
make -C src
Andinstall it:

make -C src install

179

Configuring Sysvinit
Create a new file /etc/inittab by running the following:

cat > /etc/inittab << "EOF"
Begin /etc/inittab

id:3:initdefaul t:
si::sysinit:/etc/rc.d/init.d/rc sysinit

10:0:wait:/etc/rc.d/init.d/rc 0
11:S1:wait:/etc/rc.d/init.d/rc 1
12:2:wait:/etc/rc.d/init.d/rc 2
13:3:wait:/etc/rc.d/init.d/rc 3
14:4:wait:/etc/rc.d/init.d/rc 4
15:5:wait:/etc/rc.d/init.d/rc 5
16:6:wait:/etc/rc.d/init.d/rc 6

ca:12345:ctrlaltdel:/sbin/shutdown -tl1 -a -r now
su:S016:once:/sbin/sulogin

:2345:respawn:/sbin/agetty ttyl 9600
:2345:respawn:/sbin/agetty tty2 9600
:2345:respawn:/sbin/agetty tty3 9600
:2345:respawn:/sbin/agetty tty4 9600
:2345:respawn:/sbin/agetty tty5 9600
:2345:respawn:/sbin/agetty tty6 9600

ool WD

End /etc/inittab
EOF

180

Installing Tar-1.13.25

Estimated build time: 0.2 SBU
Estimated required disk space: 10 MB

Contents of Tar

Tar isan archiving program designed to store and extract files from an archivefile
known as atar file.

Installed programs: rmt and tar

Tar Installation Dependencies

Tar depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Sed.

Installation of Tar

Prepare Tar for compilation:

./configure --prefix=/usr --bindir=/bin \
--libexecdir=/usr/bin

Compile the package:
make

This package has a test suite available which can perform a number of checks to ensure
it built correctly. Should you choose to run it, the following command will do so:

make check

And install the package:

make install

181

Installing Util-linux-2.12

Estimated build time: 0.2 SBU
Estimated required disk space: 16 MB

Contents of Util-linux

The Util-linux package contains a number of miscellaneous utility programs. Some of
the more prominent utilities are used to mount, unmount, format, partition and manage
disk drives, open tty ports and fetch kernel messages.

Installed programs: agetty, arch, blockdev, cal, cfdisk, chkdupexe, col, colcrt, colrm,
column, ctrlaltdel, cytune, ddate, dmesg, €lvtune, fdformat, fdisk, fsck.cramfs,
fsck.minix, getopt, hexdump, hwelock, ipcrm, ipcs, isosize, kill, line, logger, 100k,
losetup, mcookie, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount,
namei, parse.bash, parse.tcsh, pg, pivot_root, ramsize (link to rdev), raw, rdev,
readprofile, rename, renice, rev, rootflags (link to rdev), script, setfdprm, setsid,
setterm, sfdisk, swapoff (link to swapon), swapon, test.bash, test.tcsh, tundp, ul,
umount, vidmode (link to rdev), whereis and write

Util-linux Installation Dependencies

Util-linux depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed, Zlib.

FHS compliance notes

The FHS recommends that we use /var/lib/hwclock, instead of the usual /etc, asthe
location for the adjtime file. To make the hwelock program FHS-compliant, run the
following:

cp hweclock/hwelock.c{, -backup}

sed "shWetc/adjtime%var/lib/hwclock/adjtime%" \
hweclock/hwelock.c.backup > hwclock/hwclock.c

mkdir -p /var/lib/hwclock

Installation of Util-linux
Prepare Util-linux for compilation:
./configure

Compile the package:

make HAVE SLN=yes

182

The meaning of the make parameter:
e HAVE_SLN=yes: This prevents the sIn program (a statically linked In, already
installed by Glibc) from being built again.

And install the package:
make HAVE SLN=yes install

183

Installing GCC-2.95.3

Estimated build time: 1.5 SBU
Estimated required disk space: 130 MB

Installation of GCC

This package is known to behave badly when you have changed its default
optimization flags (including the -march and -mcpu options). Therefore, if you have
defined any environment variables that override default optimizations, such as
CFLAGS and CXXFLAGS, we recommend unsetting or modifying them when
building GCC.

Thisis an older release of GCC which we are going to install for the purpose of
compiling the Linux kernel in Chapter 8. This version is recommended by the kernel
developers when you need absolute stability. Later versions of GCC have not received
as much testing for Linux kernel compilation. Using a later versioniis likely to work,
however, we recommend adhering to the kernel developer's advice and using the
version here to compile your kernel.

= Wedontinstall the C++ compiler or libraries here. However, there may
be reasons why you would want to install them. More information can be
found at http://www. linuxfromscratch.org/blfs/view/stable/
general/gcc2.html.

Well install this older release of GCC into the non-standard prefix of /opt so asto
avoid interfering with the system GCC already installed in /usr .

Apply the patches and make a small adjustment:

patch -Npl -1 ../gcc-2.95.3-2_patch

patch -Npl -1 ../gcc-2.95.3-no-fixinc.patch
patch -Npl -1 ../gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in

The GCC documentation recommends building GCC outside of the source directory in
adedicated build directory:

mkdir ../gcc-2-build
cd ../gcc-2-build

184

Compile and install the compiler:

../gcc-2.95.3/configure --prefix=/opt/gcc-2.95.3 \
--enable-shared --enable-languages=c \
--enable-threads=posix

make bootstrap

make install

Revised chroot command

From now on when you exit the chroot environment and wish to re-enter it, you should
run the following modified chroot command:

chroot $LFS /usr/bin/env -i \
HOME=/root TERM=$TERM PS1="\u:\w\$ " \
PATH=/bin:/usr/bin:/sbin:/usr/sbin \
/bin/bash --login

The reason being thereis no longer any need to use programs from the /tools
directory. However, we don't want to remove the /tools directory just yet. Thereis
still some use for it towards the end of the book.

185

Installing LFS-Bootscripts-1.12

Estimated build time:
Estimated required disk space:

SBU

0.1
0.3 MB

Contents of LFS-bootscripts

The LFS-Bootscripts package contains SysV init style shell scripts. These scripts do
various tasks such as check filesystem integrity during boot, load keymaps, set up
networks and halt processes at shutdown.

Installed scripts: checkfs, cleanfs, functions, halt, ifdown, ifup, loadkeys, localnet,
mountfs, mountproc, network, rc, reboot, sendsignals, setclock, swap, sysklogd and
template

LFS-Bootscripts Installation Dependencies
Bzip2 depends on: Bash, Coreutils.

Installation of LFS-Bootscripts

Wewill beusing SysV style init scripts. We have chosen this style because it is widely
used and we feel comfortable with it. If you would prefer to try something else, Marc
Heerdink has written a hint about BSD style init scripts, to be found at

http://www. linuxfromscratch.org/hints/downloads/files/bsd-init.txt. And if
you'd like something more radical, search the LFS mailing lists for depinit.

If you decideto use BSD style, or some other style scripts, you can skip the next
chapter when you arrive at it and move on to Chapter 8.

Install the boot scripts:

cp -a rc.d sysconfig /etc

Give root ownership of the scripts:

chown -R root:root /etc/rc.d /etc/sysconfig

186

Configuring system components

Now that all softwareisinstalled, all that we need to do is perform a few configuration
tasks.

Configuring your keyboard

Few things are more annoying than using Linux while a wrong keymap for your
keyboard is |oaded. If you have a standard US keyboard, however, you can skip this
section, as the US keymap is the default as long as you don't changeit.

To change the default keymap, create the /usr/share/kbd/keymaps/defkeymap.map.gz
symlink by running the following command:

In -s path/to/keymap /usr/share/kbd/keymaps/defkeymap.map.gz

Of course, replace path/to/keymap with the path and name of your keyboard's map file.
For example, if you have a Dutch keyboard, you would use i386/qwerty/nl _map.gz.

Another way to set your keyboard's layout is to compile the keymap into the kernel.
This ensures that your keyboard will always work as expected, even when you boot
into maintenance mode (by passing “init=/bin/sh' to the kernel), as then the bootscript
that normally sets up your keymap isn't run.

Run the following command to patch the current default keymap into the kernel
source. You will haveto repeat this command whenever you unpack a new kernel:

loadkeys -m /usr/share/kbd/keymaps/defkeymap.-map.gz > \
/usr/src/linux-2.4._22/drivers/char/defkeymap.c

Setting the root password
Choose a password for user root and set it by running the following command:

passwd root

187

188

Chapter 7
Setting up system boot scripts

Introduction

This chapter will set up the bootscripts that you installed in chapter 6. Most of these
scripts will work without needing to modify them, but afew do require additional
configuration files set up as they deal with hardware dependent information.

How does the booting process with these scripts
work?

Linux uses a special booting facility named SysVinit. It's based on a concept of
runlevels. It can be widely different from one system to another, so it can't be assumed
that because things worked in <insert distro name> they should work like that in LFS
too. LFS hasits own way of doing things, but it respects generally accepted standards.

SysVinit (which well call init from now on) works using arunlevels scheme. There are
7 (from O to 6) runlevels (actually, there are more runlevels but they are for special
cases and generally not used. Theinit man page describes those details), and each one
of those corresponds to the things the computer is supposed to do when it starts up.

The default runlevel is 3. Here are the descriptions of the different runlevels as they are
often implemented:

0: halt the computer

1: single-user mode

2: multi-user mode without networking

3: multi-user mode with networking

4: reserved for customization, otherwise does the same as 3

5: sameas4, it isusually used for GUI login (like X's xdm or KDE's kdm)
6: reboot the computer

The command used to change runlevelsis init <runlevel> where <runlevel> isthe
target runlevel. For example, to reboot the computer, a user would issue theinit 6
command. The reboot command is just an alias, asis the halt command an alias to init
0.

There are anumber of directories under /etc/rc.d that look like likerc?.d where ? is the
number of the runlevel and rcsysinit.d which contain a number of symbolic links.
Some begin with a K, the others begin with an S, and all of them have two numbers
following theinitial letter. The K meansto stop (kill) aservice, and the S means to
start a service. The numbers determine the order in which the scripts are run, from 00
to 99; the lower the number the sooner it gets executed. When init switches to another
runlevel, the appropriate services get killed and others get started.

189

Thereal scripts arein/etc/rc.d/init.d. They do all the work, and the symlinks all point
to them. Killing links and starting links point to the same script in /etc/rc.d/init.d.
That's because the scripts can be called with different parameters like start, stop,
restart, reload, status. When a K link is encountered, the appropriate script is run with
the stop argument. When a S link is encountered, the appropriate script is run with the
start argument.

Thereis one exception. Links that start with an S in the rc0.d and rc6.d directories will
not cause anything to be started. They will be called with the parameter stop to stop
something. Thelogic behind it is that when you are going to reboot or halt the system,
you don't want to start anything, only stop the system.

These are descriptions of what the arguments make the scripts do:
e start: Theserviceis started.
e stop: Theserviceis stopped.
e restart: The serviceis stopped and then started again.

o reload: The configuration of the service is updated. Thisis used after the
configuration file of a service was modified, when the service doesn't need to
be restarted.

e status: Tdlsif the serviceis running and with which PIDs.

Fedl free to modify the way the boot process works (after all, it's your own LFS
system). Thefiles given here are just an example of how it can be donein a nice way
(well, what we consider nice— you may hate it).

Configuring the setclock script

This setclock script reads the time from your hardware clock (also known as BIOS or
CMOS clock) and either converts that time to localtime using the /etc/local time file
(if the hardware clock is set to GMT) or not (if the hardware clock is already set to
localtime). Thereis no way to auto-detect whether the hardware clock is set to GMT or
not, so we need to configure that here ourselves.

Change the value of the UTC variable below to a 0 (zero) if your hardware clock is not
set to GMT time.

Create a new file /etc/sysconfig/clock by running the following:

cat > /etc/sysconfig/clock << "EOF"
Begin /etc/sysconfig/clock

uTC=1

End /etc/sysconfig/clock
EOF

190

Now, you may want to take a look at a very good hint explaining how we deal with
time on LFS at http://ww . linuxfromscratch.org/hints/downloads/files/time.txt.
It explains issues such as time zones, UTC, and the TZ environment variable.

Do | need the loadkeys script?

If you decided to compile your keymap file directly into the kernel back at the end of
Chapter 6, then you strictly speaking don't need to run this loadkeys script, since the
kernel has aready set up the keymap for you. You can still run it if you want, it isn't
going to hurt you. It could even be beneficial to keep it in case you run alot of
different kernels and don't remember or want to compile the keymap into every kernel
you lay your hands on.

If you decided you don't need to, or don't want to use the loadkeys script, remove the
/etc/rc.d/resysinit.d/S70loadkeys symlink.

Configuring the sysklogd script

The sysklogd script invokes the syslogd program with the -m O option. This option
turns off the periodic timestamp mark that syslogd writesto the log files every 20
minutes by default. If you want to turn on this periodic timestamp mark, edit the
sysklogd script and make the changes accordingly. Seeman syslogd for more
information.

Configuring the localnet script

Part of the localnet script is setting up the system's hostname. This needs to be
configured in the/etc/sysconfig/network.

Create the /etc/sysconfig/network file and enter a hostname by running:
echo "HOSTNAME=Ifs" > /etc/sysconfig/network

"Ifs" needs to be replaced with the name the computer is to be called. Y ou should not
enter the FQDN (Fully Qualified Domain Name) here. That information will be put in
the /etc/hosts file later on.

Creating the /etc/hosts file

If a network card is to be configured, you have to decide on the |P-address, FQDN and
possible aliases for usein the/etc/hosts file. The syntax is:

<IP address> myhost.mydomain.org aliases

191

Y ou should make sure that the IP-address isin the private network | P-address range.
Valid ranges are:

Class Networks

A 10.0.0.0

B 172.16.0.0 through 172.31.0.0

C 192.168.0.0 through 192.168.255.0

A valid IP address could be 192.168.1.1. A valid FQDN for this IP could be
www.linuxfromscratch.org.

If you aren't going to use a network card, you still need to come up with a FQDN. This
is necessary for certain programs to operate correctly.

If a network card is not going to be configured, create the /etc/hosts file by running:
cat > /etc/hosts << "EOF"
Begin /etc/hosts (no network card version)

127.0.0.1 <value of HOSTNAME>.mydomain.com <value of HOSTNAME> localhost

End /etc/hosts (no network card version)
EOF

If a network card is to be configured, create the /etc/hosts file by running:

cat > /etc/hosts << "EOF"
Begin /etc/hosts (network card version)

127.0.0.1 localhost.localdomain localhost
192.168.1.1 <value of HOSTNAME>.mydomain.org <value of HOSTNAME>

End /etc/hosts (network card version)
EOF

Of course, the 192.168.1.1 and <value of HOSTNAME>.mydomain.org have to be
changed to your liking (or requirements if assigned an | P-address by a network/system
administrator and this machine is planned to be connected to an existing network).

Configuring the network script
This section only applies if you're going to configure a network card.

If you don't have any network cards, you are most likely not going to create any
configuration files relating to network cards. If that is the case, you must remove the
network symlinks from all the runlevel directories (/etc/rc.d/rc*.d)

192

Configuring default gateway

If you're on a network you may need to set up the default gateway for this machine.
Thisis done by adding the proper values to the /etc/sysconfig/network file by running
thefollowing:

cat >> /etc/sysconfig/network << "EOF"
GATEWAY=192.168.1.2

GATEWAY_IF=ethO

EOF

The values for GATEWAY and GATEWAY _IF need to be changed to match your
network setup. GATEWAY contains the |P address of the default gateway, and
GATEWAY _IF contains the network interface through which the default gateway can
be reached.

Creating network interface configuration files

Which interfaces are brought up and down by the network script depends on thefilesin
the /etc/sysconfig/network-devices directory. This directory should contain filesin the
form of ifconfig.xyz, where xyz is a network interface name (such as ethO or ethO:1)

If you decide to rename or move this /etc/sysconfig/network-devices directory, make
sure you update the /etc/sysconfig/rc file as well and update the network_devices by
providing it with the new path.

Now, new files are created in that directory containing the following. The following
command creates a sample ifconfig.ethO file:

cat > /etc/sysconfig/network-devices/ifconfig.eth0 << "EOF"
ONBOOT=yes

1P=192.168.1.1

NETMASK=255.255.255.0

BROADCAST=192.168.1.255

EOF

Of course, the values of those variables have to be changed in every file to match the
proper setup. If the ONBOOT variableis set to yes, the network script will bring it up
during the booting of the system. If set to anything else but yes, it will be ignored by
the network script and thus not brought up.

193

194

Chapter 8
Making the LFS system bootable

Introduction

This chapter will make LFS bootable. This chapter deals with creating a new fstab file,
building a new kernel for the new LFS system and installing the Grub bootloader so
that the LFS system can be selected for booting at startup.

Creating the /etc/fstab file

The /etc/fstab file is used by some programs to determine where partitions are to be
mounted by default, which file systems must be checked and in which order. Create a
new file systems table like this:

cat > /etc/fstab << "EOF"
Begin /etc/fstab

filesystem mount-point fs-type options dump fsck-order
/dev/xxx / rf defaults 1 1
/dev/yyy swap swap pri=1 0 0
proc /proc proc defaults 0 0
devpts /dev/pts devpts gid=4,mode=620 O 0
shm /dev/shm tmpfs defaults 0 0

End /etc/fstab
EOF

Of course, replace xxx, yyy and fff with the values appropriate for your system — for
example hda2, hda5 and reiserfs. For all the details on the six fieldsin thistable, see
man 5 fstab.

When using a reiserfs partition, the 1 1 at the end of the line should be replaced with O
0, as such a partition does not need to be dumped or checked

The /7dev/shm mount point for tmpfsis included to alow enabling POSIX shared
memory. Your kernel must have the required support built into it for thisto work —
more about this in the next section. Please note that currently very little software
actually uses POSIX shared memory. Therefore you can consider the /dev/shm mount
point optional. For more information, see Documentation/filesystems/tmpfs.txt in
the kernel sourcetree.

There are other lines which you may consider adding to your fstab file. One example
isalineto useif you intend to use USB devices:

usbfs /proc/bus/usb usbfs defaults 0 0

195

This option will of course only work if you have the relevant support compiled into
your kernel.

Installing Linux-2.4.22

Estimated build time: All default options: 4.20 SBU
Estimated required disk space: All default options: 181 MB

Contents of Linux

The Linux kernel is at the core of every Linux system. It's what makes Linux tick.
When a computer is turned on and boots a Linux system, the very first piece of Linux
software that gets loaded is the kernel. The kernel initializes the system's hardware
components: serial ports, paralld ports, sound cards, network cards, IDE controllers,
SCSI controllers and alot more. In a nutshell the kernel makes the hardware available
so that the software can run.

Installed files: the kernel and the kernel headers

Linux Installation Dependencies

Linux depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make,
Modutils, Perl, Sed.

Installation of the kernel

Building the kernel involves a few steps: configuration, compilation, and installation.
If you don't like the way this book configures the kernel, view the README filein the
kernel source treefor alternative methods.

Prepare for compilation by running the following command:
make mrproper

This ensures that the kernel treeis absolutely clean. The kernel team recommends that
this command beissued prior to each kernel compilation. Y ou shouldn't rdly on the
source tree being clean after untarring.

Configurethe kernel via a menu-driven interface:
make menuconfig

make oldconfig may be more appropriatein some situations. See the README file for
more information.

If you wish, you may skip kernel configuration by simply copying the kernel config
file, .config, fromyour host system (assuming it is available) to the unpacked linux-
2.4.22 directory. However, we don't recommend this option. Y ou're much better off

196

exploring all the configuration menus and creating your own kernel configuration from
scratch.

For POSIX shared memory support, ensure that the kernel config option "Virtual
memory file system support"” is enabled. It resides within the "File systems" menu and
is normally enabled by default.

Verify dependencies and create dependency information files:
make CC=/opt/gcc-2.95.3/bin/gcc dep

Compile the kernel image:

make CC=/opt/gcc-2.95.3/bin/gcc bzlmage

Compile the drivers which have been configured as modules:
make CC=/opt/gcc-2.95.3/bin/gcc modules

If you intend to use kernel modules, you will need an /etc/modules. conf file.
Information pertaining to modules and to kernel configuration in general may be found
in the kernel documentation, which is found in the linux-2.4.22/Documentation
directory. The modules.conf man page and the kernel HOWTO at
http://www.tldp.org/HOWTO/Kernel-HOWTO. html may also be of interest to you.

Install the modules:
make CC=/opt/gcc-2.95.3/bin/gcc modules_install

As nothing is complete without documentation, build the manual pages that come with
the kernel:

make mandocs
And install these pages:
cp -a Documentation/man /usr/share/man/man9

Kernd compilation has finished, but some of thefiles created till reside in the source
tree. To complete the installation, two files need to be copied to the /boot directory.

The path to the kernel file may vary depending on the platform you're using. Issue the
following command to install the kernel:

cp arch/i386/boot/bzImage /boot/1fskernel

System.map isasymbol filefor the kernel. It maps the function entrypoints of every
function in the kernel API, aswell as the addresses of the kernel data structures for the
running kernel. I1ssue the following command to install the map file:

cp System.map /boot

Making the LFS system bootable

Y our shiny new LFS system is ailmost complete. One of the last things to do is ensure
you can boat it. Theinstructions below apply only to computers of 1A-32 architecture,

197

i.e. mainstream PC's. Information on "boot loading” for other architectures should be
available in the usual resource specific locations for those architectures.

Boot |oading can be a complex area. First, afew cautionary words. Y ou really should
be familiar with your current boot loader and any other operating systems present on
your hard drive(s) that you might wish to keep bootable. Please make sure that you
have an emergency boot disk ready, so that you can rescue your computer if, by any
chance, your computer becomes unusable (unbootable).

Earlier, we compiled and installed the Grub boot loader softwarein preparation for this
step. The procedureinvolves writing some special Grub files to specific locations on
the hard drive. Before we get to that, we highly recommend that you create a Grub
boot floppy diskette just in case. Insert a blank floppy diskette and run the following
commands:

dd 1f=/boot/grub/stagel of=/dev/fd0 bs=512 count=1
dd 1f=/boot/grub/stage2 of=/dev/fd0 bs=512 seek=1

Remove the diskette and store it somewhere safe. Now we'll run the grub shell:
grub

Grub uses its own naming structure for drives and partitions, in the form of (hdn,m),
wheren is the hard drive number, and m the partition number, both starting from zero.
This means, for instance, that partition hdal is (hd0,0) to Grub, and hdb2 is (hdl,1). In
contrast to Linux, Grub doesn't consider CD-ROM drives to be hard drives, so if you
have a CD on hdb, for example, and a second hard drive on hdc, that second hard drive
would still be (hdl).

Using the above information, determine the appropriate designator for your root
partition. For the following example, well assume your root partition is hda4.

First, tell Grub where to search for its stage{1,2} files— you can use Tab everywhere
to make Grub show the alternatives:

root (hd0,3)

<1 Thefollowing command will overwrite your current boot loader. Don't
run the command if this is not what you want. For example, you may be
using a third party boot manager to manage your MBR (Master Boot
Record). In this scenario, it would probably make more sense to install
Grub into the "boot sector” of the LFS partition, in which case the
command would become: setup (hdo0,3).

Thentdl it to install itsef into the MBR (Master Boot Record) of hda:
setup (hd0)

If al iswell, Grub will have reported finding its filesin /boot/grub. That's all thereis
toit:

quit

198

Now we need to create a "menu list" file, defining Grub's boot menu:

cat > /boot/grub/menu.lst << “EOF"
Begin /boot/grub/menu. Ist

By default boot the first menu entry.
default 0

Allow 30 seconds before booting the default.
timeout 30

Use prettier colors.
color green/black light-green/black

The first entry is for LFS.

title LFS 5.0

root (hd0,3)

kernel /boot/Ifskernel root=/dev/hda4 ro
EOF

Y ou may want to add an entry for your host distribution. It might look like this:

cat >> /boot/grub/menu.lIst << "EOF"

title Red Hat

root (hd0,2)

kernel /boot/kernel-2.4.20 root=/dev/hda3 ro
initrd /boot/initrd-2.4.20

EOF

Also, if you happen to dual-boot Windows, the following entry should allow booting
it:

cat >> /boot/grub/menu.lIst << "EOF"

title Windows

rootnoverify (hd0,0)

chainloader +1

EOF

If info grub doesn't tell you all you want to know, you can find more information
regarding Grub on its website, located at: http://www.gnu.org/software/grub.

199

200

Chapter 9
The End

The End

Wl done! You havefinished installing your LFS system. It may have been along
process, but we hope it was worth it. We wish you alot of fun with your new shiny
custom built Linux system.

Now would be a good timeto strip all debug symbols from the binaries on your LFS
system. If you are not a programmer and don't plan on debugging your software, then
you will be happy to know that you can reclaim a few tens of megs by removing debug
symbols. This process causes no inconvenience other than not being able to debug the
software fully anymore, which is not an issue if you don't know how to debug.

Disclaimer: 98% of the people who use the command mentioned below don't
experience any problems. But do make a backup of your LFS system before you run
this command. There's a dlight chance it may backfire on you and render your system
unusable (mostly by destroying your kernel modules and dynamic & shared libraries).
Thisis caused more often by typos than by a problem with the command used.

Having said that, the --strip-debug option we useto strip is quite harmless under
normal circumstances. It doesn't strip anything vital from thefiles. It alsois quite safe
to use --strip-all on regular programs (don't use that on libraries - they will be
destroyed), but it's not as safe, and the space you gain is not all that much. But if you're
tight on disk space every little bit helps, so decide for yourself. Please refer to the strip
man page for other strip options you can use. The general ideais to not run strip on
libraries (other than --strip-debug), just to be on the safe side.

If you are planning to go ahead and perform the strip, special care is needed to ensure
you're not running any binaries that are about to be stripped — including the active
bash shell. Therefore you'll need to exit the chroot environment and reenter it using a
modified chroot command:

logout

chroot $LFS /tools/bin/env -i \
HOME=/root TERM=$TERM PS1="\u:\w\$ " \
PATH=/bin:/usr/bin:/sbin:/usr/sbin \
/tools/bin/bash --login

Now run the following command:

/tools/bin/find /{,usr/,usr/local/}{bin,sbin,lib} -type f \
-exec /tools/bin/strip --strip-debug “{}* °;°

Quite a number of files will be reported as having their file format not recognized.
Most of these are scripts instead of binaries. These warnings can be safely ignored.

It may be a good idea to create an /etc/Ifs-release file. By having thisfileit isvery
easy for you (and for usif you are going to ask for help with something at some point)

201

to find out which LFS version you have installed on your system. Create this file by
running:

echo 5.0 > /etc/Ifs-release

Get Counted

Want to be counted as an LFS user now that you have finished the book? Head over to
http://linuxfromscratch.org/cgi-bin/Ifscounter.cgi and register asan LFS user
by entering your name and thefirst LFS version you have used.

Let's reboot into LFS now...

Rebooting the system

Now that all of the software has been installed, it's time to exit the chroot environment
and reboot the computer. Before we exit the chroot environment, let's unmount any
mounted virtual file systems by running:

umount /proc
umount /dev/pts

Exit the chroot environment:
logout

Additionally, now that all software has been installed, thereis no longer a need for the
/tools directory. You may deleteit. Asthis will also remove the temporary copies of
Tcl, Expect and DgaGnu, which were used for running the tool chain tests, you will
need to recompile and re-install them on your LFS system if you want to use these
programs later.

Also you may now want to move the contents of /sources to /usr/src/packages or
something similar (or simply delete them if you've burned them on a CD) and delete
thedirectory.

Before wereboot, let's unmount the LFS partition itself:
umount $LFS

If you earlier decided to create multiple partitions, you'll need to unmount the other
partitions before you unmount $LFS, like this:

umount $LFS/usr
umount $LFS/home
umount $LFS

And now you can reboot your system by running something like:
/sbin/shutdown -r now

Assuming the Grub boot |oader was set up as outlined earlier, the default menu should
be set to boot LFS 5.0 automatically.

202

After you have rebooted, your LFS system is ready for use and you can start adding
your own software.

What now?

We thank you for reading the LFS Book and hope that you've found this book useful
and worth your time.

Now that you have finished installing your LFS system, you may be wondering "What
now?'. In order to answer that question, we have composed a list of resources for you.

Beyond Linux From Scratch

The Beyond Linux From Scratch book covers installation procedures for a
wide range of software beyond the scope of the LFS Book. The BLFS project
can befound at http://www. linuxfromscratch.org/blfs/.

LFS Hints

The LFS Hints are a collection of small, educational documents submitted by
volunteers in the LFS community. The Hints are available at
http://ww._linuxfromscratch.org/hints/list.html.

Mailing lists

There are several LFS mailing lists you may subscribeto if you arein need of
help. See Chapter 1 - Mailing lists for more information.

The Linux Documentation Project

The goal of the Linux Documentation Project is to collaboratein all of the
issues of Linux documentation. The LDP features a large collection of
HOWT Os, Guides and man pages; it may be found at http://ww.tldp.org/.

203

204

Part IV - Appendices

205

206

Appendix A
Package descriptions and
dependencies

Introduction

In this appendix the following aspects of every package installed in this book are
described:

o theofficial download location for the package,
o what the package contains,

o what each program from the package does,

o what the package needs to be compiled.

Most information about these packages (especially the descriptions of them) come
from the man pages of those packages. We do not include the entire man page, but just
some key elements to make it possible to understand what a program does. To get
information on all details of a program, please refer to its man page or info page.

Certain packages are documented in more depth than others, because we just happen to
know more about certain packages than about others. If you think anything should be
added to the following descriptions, please don't hesitate to email the mailing lists. We
intend that the list should contain an in-depth description of every package installed,
but we can't do it without help.

Please note that currently only what a package does is described and not why it needs
to beinstalled. This may be added later.

Also listed are all of theinstallation dependencies for all the packages that areinstalled
in this book. Thelistings will include which programs from which packages are needed
to successfully compile the package to be installed.

These are not running dependencies, meaning they don't tell you what programs are
needed to use that package's programs, just the ones needed to compileit.

The dependency list can be, from time to time, outdated in regards to the currently used
package version. Checking dependencies takes quite a bit of work, so they may lag
behind a bit on the package update. But often with minor package updates, the
installation dependencies hardly change, so they'll be current in most cases. When we
upgrade to amajor new release, we'll make sure the dependencies are checked too.

207

Autoconf

For installation instructions see the Section called Installing Autoconf-2.57 in Chapter
6.

Official Download Location

Autoconf (2.57):
ftp://ftp._gnu.org/gnu/autoconf/

Contents of Autoconf
Autoconf produces shell scripts which automatically configure source code.

Installed programs: autoconf, autoheader, automdte, autoreconf, autoscan, autoupdate
and ifnames

Short descriptions

autoconf isatool for producing shell scripts that automatically configure software
source code packages to adapt to many kinds of Unix-like systems. The configuration
scripts it produces are independent — running them does not require the autoconf
program.

autoheader isatool for creating template files of C #define statements for configure
to use.

automd4teis awrapper for the M4 macro processor.

autoreconf comes in handy when there are alot of autoconf-generated configure
scripts around. The program runs autoconf and autoheader repeatedly (where
appropriate) to remake the autoconf configure scripts and configuration header
templates in a given directory tree.

autoscan can help to create a configure. in file for a software package. It examines the
sourcefilesin adirectory tree, searching them for common portability problems and
creates a configure.scan file that serves asasaprdiminary configure.in for the
package.

autoupdate modifies a configure.in filethat till calls autoconf macros by their old
names to use the current macro names.

ifnames can be helpful when writing a configure. in for a software package. It prints
theidentifiers that the package uses in C preprocessor conditionals. If a package has
already been set up to have some portability, this program can help to determine what
configure needs to check. It can fill in some gapsin a configure. in file generated by
autoscan.

208

Autoconf Installation Dependencies
Autoconf depends on: Bash, Coreutils, Diffutils, Grep, M4, Make, Perl, Sed.

Automake

For installation instructions see the Section called Installing Automake-1.7.6 in Chapter
6.

Official Download Location

Automake (1.7.6):
ftp://ftp._gnu.org/gnu/automake/

Contents of Automake
Automake generates Makefile.in files, intended for use with Autoconf.

Installed programs: acinstall, aclocal, aclocal-1.7, automake, automake-1.7, compile,
config.guess, config.sub, depcomp, eisp-comp, install-sh, mdate-sh, missing,
mkinstalldirs, py-compile, ylwrap

Short descriptions
acinstall is a script that installs aclocal-style M4 files.
aclocal generates aclocal .m4 files based on the contents of configure.in files.

automake is atool for automatically generating Makefile. in's fromfiles called
Makefile.am. To create all the Makefile.in files for apackage, run this program in the
top level directory. By scanning the configure. insit automatically finds each
appropriate Makefi le.am and generate the corresponding Makefile. in.

compileis awrapper for compilers.

config.guessis a script that attempts to guess the canonical triplet for the given build,
host, or target architecture.

config.sub is a configuration validation subroutine script.

depcomp is a script for compiling a program so that not only the desired output is
generated but also dependency information.

elisp-comp byte-compiles Emacs Lisp code.
install-sh is a script that installs a program, a script, or a datafile.
mdate-sh isa script that prints the modification time of afile or directory.

209

missing is a script acting as a common stub for missing GNU programs during an
installation.

mkinstalldirsis a script that creates a directory tree.
py-compile compiles a Python program.
ylwrap is awrapper for lex and yacc.

Automake Installation Dependencies

Automake depends on: Autaconf, Bash, Coreutils, Diffutils, Grep, M4, Make, Perl,
Sed.

Bash
For installation instructions see the Section called Installing Bash-2.05b in Chapter 6.

Official Download Location
Bash (2.05by):
ftp://ftp_gnu.org/gnu/bash/

Bash Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/bash-2.05b-2_patch

Contents of Bash

bash is the Bourne-Again SHell, which is awidely used command interpreter on Unix
systems. The bash program reads from standard input (the keyboard). A user types
something and the program will evaluate what he has typed and do something with it,
like running a program.

Installed programs: bash, sh (link to bash) and bashbug

Short descriptions

bash is awidely-used command interpreter. It performs all kinds of expansions and
substitutions on a given command line before executing it, thus making this interpreter
a powerful tool.

bashbug is a shell script to help the user compose and mail bug reports concerning
bash in a standard format.

sh isa symlink to the bash program. When invoked as sh, bash tries to mimic the
startup behavior of historical versions of sh as closely as possible, while conforming to
the POSIX standard as well.

210

Bash Installation Dependencies

Bash depends on: Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Binutils
For installation instructions see the Section called Installing Binutils-2.14 in Chapter 6.

Official Download Location

Binutils (2.14):
ftp://ftp_gnu.org/gnu/binutils/

Contents of Binutils

Binutils is a collection of software devel opment tools containing a linker, assembler
and other tools to work with object files and archives.

Installed programs: addr2line, ar, as, c++filt, gprof, Id, nm, objcopy, objdump, ranlib,
readelf, size, strings and strip

Installed libraries: libiberty.a, libbfd.[a,50] and libopcodes.[a,s0]

Short descriptions

addr 2line translates program addresses to file names and line numbers. Given an
address and the name of an executable, it uses the debugging information in the
executable to figure out which source file and line number are associated with the
address.

ar creates, modifies, and extracts from archives. An archiveisasinglefile holding a
collection of other filesin a structure that makes it possibleto retrieve the original
individual files (called members of the archive).

asisan assembler. It assembles the output of gcc into object files.

c++filt isused by the linker to demangle C++ and Java symbols, to keep overloaded
functions from clashing.

gprof displays call graph profile data.

Id isalinker. It combines a number of object and archivefilesinto asinglefile,
relocating their data and tying up symbol references.

nm lists the symbols occurring in a given object file.
objcopy is used to translate one type of object fileinto another.

211

objdump displays information about the given object file, with options controlling
what particular information to display. The information shown is mostly only useful to
programmers who are working on the compilation tools.

ranlib generates an index of the contents of an archive, and storesit in the archive. The
index lists al the symbols defined by archive members that are rel ocatable object files.

readelf displays information about elf type binaries.
size lists the section sizes— and the grand total — for the given object files.

strings outputs for each file given the sequences of printable charactersthat are of at
least the specified length (defaulting to 4) For object files it prints by default only the
strings from theinitializing and loading sections. For other types of filesit scans the
wholefile.

strip discards symbols from object files.

libiberty contains routines used by various GNU programs, including getopt, obstack,
strerror, strtol and strtoul.

libbfd is the Binary File Descriptor library.

libopcodesis alibrary for dealing with opcodes. It is used for building utilities like
objdump. Opcodes are the "readable text" versions of instructions for the processor.

Binutils Installation Dependencies

Binutils depends on: Bash, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Perl,
Sed, Texinfo.

Bison
For installation instructions see the Section called Installing Bison-1.875 in Chapter 6.

Official Download Location
Bison (1.875):
ftp://ftp_gnu.org/gnu/bison/

Bison Attribute Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/bison-1.875-attribute.patch

Contents of Bison

Bison is a parser generator, areplacement for yacc. Bison generates a program that
analyzes the structure of atext file.

Installed programs: bison and yacc

212

Installed library: liby.a

Short descriptions

bison generates, from a series of rules, a program for analyzing the structure of text
files. Bison is areplacement for yacc (Y et Another Compiler Compiler).

yacc is awrapper for bison, meant for programs that still call yacc instead of bison. It
calls bison with the -y option.

liby.aisthe Yacc library containing implementations of Y acc-compatible yyerror and
main functions. This library is normally not very useful, but POSIX requiresit.

Bison Installation Dependencies

Bison depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, M4,
Make, Sed.

Bzip2
For installation instructions see the Section called Installing Bzip2-1.0.2 in Chapter 6.

Official Download Location

Bzip2 (1.0.2):
http://sources.redhat.com/bzip2/

Contents of Bzip2

Bzip2 is a block-sorting file compressor which generally achieves a better compression
than the traditional gzip does.

Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp, bzdiff,
bzegrep, bzfgrep, bzgrep, bzip2, bzip2recover, bzless and bzmore

Installed libraries: libbz2.a, libbz2.so (link to libbz2.50.1.0), libbz2.50.1.0 (link to
libbz2.50.1.0.2) and libbz2.50.1.0.2

Short descriptions

bunzip2 decompresses bzipped files.
bzcat decompresses to standard outpui.
bzcmp runs cmp on bzipped files.
bzdiff runs diff on bzipped files.

213

bzgrep and friends run grep on bzipped files.

bzip2 compresses files using the Burrows-Wheeler block sorting text compression
algorithm with Huffman coding. The compression rate is generally considerably better
than that achieved by more conventional compressors using LZ77/LZ78, like gzip.

bzip2recover triesto recover data from damaged bzip?2 files.
bzless runs less on bzipped files.
bzmor e runs more on bzipped files.

libbz2* isthe library implementing lossless, block-sorting data compression, using the
Burrows-Wheseler algorithm.

Bzip2 Installation Dependencies
Bzip2 depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make.

Coreutils
For installation instructions see the Section called Installing Coreutils-5.0 in Chapter 6.

Official Download Location

Coreutils (5.0):
ftp://ftp_gnu.org/gnu/coreutils/

Coreutils Hostname Patch:
http://ww. linuxfromscratch.org/patches/1fs/5.0/coreutils-5.0-hostname-
2_patch

Coreutils Uname Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/coreutils-5.0-uname.patch

Contents of Coreutils
The Coreutils package contains a whole series of basic shell utilities.

Installed programs: basename, cat, chgrp, chmod, chown, chroot, cksum, comm, cp,
csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor,
false, fmt, fold, groups, head, hostid, hostname, id, install, join, kill, link, In, logname,
Is, md5sum, mkdir, mkfifo, mknod, mv, nice, nl, nohup, od, paste, pathchk, pinky, pr,
printenv, printf, ptx, pwd, readlink, rm, rmdir, seq, shalsum, shred, deep, sort, split,
stat, stty, su, sum, sync, tac, tail, tee, test, touch, tr, true, tsort, tty, uname, unexpand,
uniq, unlink, uptime, users, vdir, wc, who, whoami and yes

214

Short descriptions
basename strips any path and a given suffix from the given file name.
cat concatenates files to standard output.

chgr p changes the group ownership of each given fileto the given group. The group
can be either given aaname or a numeric ID.

chmod changes the permissions of each given fileto the given mode. The mode can be
either a symbolic representation of the changes to make, or an octal number
representing the new permissions.

chown changes the user and/or group ownership of each given fileto the given
user:group pair.

chroot runs a given command with the specified directory as the / directory. The given
command can be an interactive shell. On most systems only root can do this.

cksum prints the CRC checksum and the byte counts of each specified file.

comm compares two sorted files, outputting in three columns the lines that are unique,
and the lines that are common.

cp copiesfiles.

csplit splitsa given fileinto several new files, separating them according to given
patterns or line numbers, and outputting the byte count of each new file.

cut prints parts of lines, selecting the parts according to given fields or positions.
date displays the current timein the given format, or sets the system date.

dd copies a file using the given blocksize and count, while optionally performing
conversions onit.

df reports the amount of disk space available (and used) on all mounted filesystems, or
only on the filesystems holding the given files.

dir isthesameasls.

dircolor s outputs commands to set the LS_COL OR environment variable, to change
the color scheme used by Is.

dir name strips the non-directory suffix from a given file name.

du reports the amount of disk space used by the current directory, or by each of the
given directories including all their subdirectories, or by each of the given files.

echo displays the given strings.

env runs acommand in a modified environment.

expand converts tabs to spaces.

expr evaluates expressions.

factor prints the prime factors of all specified integer numbers.

215

false does nothing, unsuccessfully. It always exits with a status code indicating failure.
fmt reformats the paragraphs in the given files.

fold wrapsthelinesin the given files.

groups reports a user's group memberships.

head prints thefirst ten lines (or the given number of lines) of each givenfile.

hostid reports the numeric identifier (in hexadecimal) of the host.

hostname reports or sets the name of the host.

id reports the effective user 1D, group 1D, and group memberships of the current user,
or of agiven user.

install copies files while setting their permission modes and, if possible, their owner
and group.

join joins from two files the lines that have identical join fields.
kill terminates the given process.

link creates a hard link with the given name to the given file.

In makes hard links or soft links between files.

logname reports the current user's login name.

Is lists the contents of each given directory. By default it orders the files and
subdirectories alphabetically.

md5sum reports or checks MD5 checksums.
mkdir creates directories with the given names.
mkfifo creates FIFOs with the given names.

mknod creates device nodes with the given names. A device nodeis a character
special file, or ablock special file, or aFIFO.

mv moves or renames files or directories.

nice runs a program with modified scheduling priority.

nl numbers the lines from the given files.

nohup runs a command immune to hangups, with output redirected to alog file.
od dumps files in octal and other formats.

paste merges the given files, joining sequentially corresponding lines side by side,
separated by TABs.

pathchk checks whether file names are valid or portable.
pinky is alightweight finger. It reports some information about the given users.
pr paginates and columnates files for printing.

216

printenv prints the environment.

printf prints the given arguments according to the given format — much like the C
printf function.

ptx produces from the contents of the given files a permuted index, with each keyword
inits context.

pwd reports the name of the current directory.

readlink reports the value of the given symbolic link.

rm removes files or directories.

rmdir removes directories, if they are empty.

seq prints a sequence of numbers, within a given range and with a given increment.
shalsum prints or checks 160-bit SHA1 checksums.

shred overwrites the given files repeatedly with strange patterns, to makeit real hard
to recover the data.

sleep pauses for the given amount of time.

sort sorts the lines from the given files.

split splits the given file into pieces, by size or by number of lines.
stty sets or reports terminal line settings.

su runs a shell with substitute user and group 1Ds.

sum prints checksum and block counts for each givenfile.

sync flushes filesystem buffers. It forces changed blocks to disk and updates the super
block.

tac concatenates the given filesin reverse.
tail prints the last ten lines (or the given number of lines) of each givenfile.

tee reads from standard input while writing both to standard output and to the given
files.

test compares values and checks file types.

touch changes file timestamps, setting the access and modification times of the given
filesto the current time. Files that do not exist are created with zero length.

tr trangdlates, squeezes, and deletes the given characters from standard input.
tr ue does nothing, successfully. It always exits with a status code indi cating success.

tsort performs atopological sort. It writes atotally ordered list according to the partial
ordering inagivenfile,

tty reports the file name of the terminal connected to standard input.
uname reports system information.

217

unexpand converts spaces to tabs.
uniq discards all but one of successiveidentical lines.
unlink removes the given file.

uptime reports how long the system has been running, how many users are logged on,
and the system |oad averages.

user s reports the names of the users currently logged on.
vdir isthesameas|s-I.

wec reports the number of lines, words, and bytes for each given file, and atotal line
when more than onefile is given.

who reports who is logged on.
whoami reports the user name associated with the current effective user ID.
yes outputs 'y' or agiven string repeatedly, until killed.

Coreutils Installation Dependencies

Coreutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Perl, Sed.

DejaGnu

For installation instructions see the Section called Installing DejaGnu-1.4.3 in Chapter
5.

Official Download Location

DegjaGnu (1.4.3):
ftp://ftp_gnu.org/gnu/dejagnu/

Contents of DejaGnu
The DgaGnu package contains a framework for testing other programs.
Installed program: runtest

Short description
runtest is the wrapper script that finds the proper expect shell and then runs DejaGnu.

218

DejaGnu Installation Dependencies

Dejagnu depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Sed.

Diffutils

For installation instructions see the Section called Installing Diffutils-2.8.1 in Chapter
6.

Official Download Location

Diffutils (2.8.1):
ftp://ftp_gnu.org/gnu/diffutils/

Contents of Diffutils

The programs from this package show you the differences between two files or
directories. It's most common use is to create software patches.

Installed programs: cmp, diff, diff3 and sdiff

Short descriptions

cmp compares two files and reports whether or in which bytes they differ.

diff compares two files or directories and reports which linesin the files differ.
diff3 compares threefiles line by line.

sdiff merges two files and interactively outputs the results.

Diffutils Installation Dependencies

Diffutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

E2fsprogs

For installation instructions see the Section called Installing E2fsprogs-1.34 in Chapter
6.

219

Official Download Location

E2fsprogs (1.34):
ftp://download. sourceforge.net/pub/sourceforge/e2fsprogs/
http://download.sourceforge.net/e2fsprogs/

Contents of E2fsprogs

E2fsprogs provides the filesystem utilities for use with the ext2 filesystem. It also
supports the ext3 filesystem with journaling support.

Installed programs: badblocks, blkid, chattr, compile_et, debugfs, dumpe2fs, e2fsck,
e2image, €2labd, findfs, fsck, fsck.ext2, fsck.ext3, logsave, Isattr, mk_cmds, mke2fs,
mkfs.ext2, mkfs.ext3, mklost+found, resize2fs, tune2fs and uuidgen.

Installed libraries: libblkid.[a,s0], libcom_err.[a,s0], libe2p.[a,s0], libext2fs.[a,s0],
libss.[a,50] and libuuid.[a,s0]

Short descriptions

badblocks searches a device (usually a disk partition) for bad blocks.

blkid is a command line utility to locate and print block device attributes.
chattr changes the attributes of files on a second extended (ext2) filesystem.

compile_et isan error table compiler. It converts atable of error-code names and
messages into a C source file suitable for use with the com_err library.

debugfsis afilesystem debugger. It can be used to examine and change the state of an
ext2 filesystem.

dumpe2fs prints the super block and blocks group information for the filesystem
present on a given device.

e2fsck is used to check, and optionally repair, second extended (ext2) filesystems, and
also ext3 filesystems.

e2image is used to save critical ext2 filesystem data to afile.

e2label will display or change the filesystem label on the ext2 filesystem present on a
given device.

findfs finds afile system by label or UUID.

fsck is used to check, and optionally repair, filesystems. By default it checks the
filesystems listed in /etc/fstab

logsave saves the output of a command in alogfile.
Isattr lists the attributes of files on a second extended filesystem.

220

mk_cmds converts atable of command names and help messages into a C source file
suitable for use with the libss subsystem library.

mke2fsis used to create a second extended filesystem on the given device.

mklost+found is used to create a lost+found directory on a second extended
filesystem. It pre-allocates disk blocks to this directory to lighten the task of e2fsck.

resize2fs can be used to enlarge or shrink an ext2 filesystem.
tune2fsis used adjust tunable filesystem parameters on a second extended filesystem.

uuidgen creates new universally unique identifiers (UUID). Each new UUID can
reasonably be considered unique among all UUIDs created, on the local system and on
other systems, in the past and in the future.

libblkid contains routines for device identification and token extraction.
libcom_err isthe common error display routine.
libe2p is used by dumpe2fs, chattr, and |sattr.

libext2fs contains routines to enable user-level programs to manipulate an ext2
filesystem.

libssis used by debugfs.

libuuid contains routines for generating unique identifiers for objects that may be
accessible beyond the local system.

E2fsprogs Installation Dependencies

E2fsprogs depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Glibc,
Grep, Make, Sed, Texinfo.

Ed
For installation instructions see the Section called Installing Ed-0.2 in Chapter 6.

Official Download Location

Ed (0.2):
ftp://ftp_gnu.org/gnu/ed/

Ed Mkstemp Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/ed-0.2-mkstemp.patch

221

Contents of Ed
GNU ed is an 8-hit clean, POSIX-compliant line editor.
Installed programs: ed and red (link to ed)

Short descriptions

ed isaline-oriented text editor. It can be used to create, display, modify and otherwise
manipulate text files.

red isarestricted ed — it can only edit files in the current directory and cannot execute
shell commands.

Ed Installation Dependencies
Ed depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Expect

For installation instructions see the Section called Installing Expect-5.39.0 in Chapter
5.

Official Download Location
Expect (5.39.0):
http://expect._nist.gov/src/

Expect Spawn Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/expect-5.39.0-spawn.patch

Contents of Expect

The Expect package provides a program that performs programmed dialogue with
other interactive programs.

Installed program: Expect 228
Installed library: libexpect5.39.a

Short description
expect "talks' to other interactive programs according to a script.

222

Expect Installation Dependencies

Expect depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed,
Tdl.

File
For installation instructions see the Section called Installing File-4.04 in Chapter 6.

Official Download Location
File (4.04):
ftp://ftp_gw.com/mirrors/pub/unix/file/

Alternate Download L ocation:
ftp://gaosu.rave.org/pub/linux/Ifs/

Contents of File

Fileis a utility used to determine file types.
Installed program: File 228

Installed library: libmagic.[a,s0]

Short description

filetriesto classify each givenfile. It does this by performing several tests: filesystem
tests, magic number tests, and language tests. Thefirst test that succeeds determines
the result.

libmagic contains routines for magic number recognition, used by the file program.

File Installation Dependencies

File depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed,
Zlib.

Findutils

For installation instructions see the Section called Installing Findutils-4.1.20 in
Chapter 6.

223

Official Download Location

Findutils (4.1.20):
ftp://alpha.gnu.org/gnu/findutils/

Contents of Findutils

The Findutils package contains programs to find files, either on-the-fly (by doing alive
recursive search through directories and only showing files that match the
specifications) or by searching through a database.

Installed programs: bigram, code, find, frcode, locate, updatedb and xargs

Short descriptions

bigram was formerly used to produce locate databases.

code was formerly used to produce locate databases. It is the ancestor of frcode.
find searches given directory trees for files matching the specified criteria

frcodeis called by updatedb to compress the list of file names. It uses front-
compression, reducing the database size by a factor of 4to 5.

locate searches through a database of file names, and reports the names that contain a
given string or match a given pattern.

updatedb updates the locate database. It scans the entire filesystem (including other
filesystems that are currently mounted, unless told not to) and puts every file nameit
finds in the database.

xargs can be used to apply a given command to a list of files.

Findutils Installation Dependencies

Findutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

Flex
For installation instructions see the Section called Installing Flex-2.5.4a in Chapter 6.

Official Download Location

Flex (2.5.44a):
ftp://ftp_gnu.org/non-gnu/flex/

224

Contents of Flex

The Flex package is used to generate programs which recognize patterns in text.
Installed programs: flex, flex++ (link to flex) and lex

Installed library: libfl.a

Short descriptions

flex isatool for generating programs that recognize patterns in text. Pattern
recognition is useful in many applications. From a set of rules on what to look for flex
makes a program that looks for those patterns. The reason to use flex is that it is much
easier to specify therules for than to write the actual pattern-finding program.

flex++ invokes a version of flex that is used exclusively for C++ scanners.
libfl.aistheflex library.

Flex Installation Dependencies

Flex depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc,
Grep, M4, Make, Sed.

Gawk
For installation instructions see the Section called Installing Gawk-3.1.3 in Chapter 6.

Official Download Location
Gawk (3.1.3):
ftp://ftp._gnu.org/pub/gnu/gawk/

Gawk Libexecdir Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/gawk-3.1.3-1ibexecdir.patch

Contents of Gawk
Gawk is an awk implementation that is used to manipul ate text files.

Installed programs: awk (link to gawk), gawk, gawk-3.1.3, grcat, igawk, pgawk,
pgawk-3.1.3 and pwcat

Short descriptions
gawk is a program for manipulating text files. It is the GNU implementation of awk.

225

grcat dumps the group database /etc/group.
igawk gives gawk the ability to includefiles.
pgawk isthe profiling version of gawk.

pwcat dumps the password database /etc/passwd.

Gawk Installation Dependencies

Gawk depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Sed.

GCC
For installation instructions see the Section called Installing GCC-3.3.1 in Chapter 6.

Official Download Location

GCC (3.3.1):
ftp://ftp_gnu.org/pub/gnu/gcc/

GCC No-Fixincludes Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/gcc-3.3.1-no_fixincludes-
2_patch

GCC Specs Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/gcc-3.3.1-specs-2.patch

GCC Suppress-Libiberty Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/gcc-3.3.1-suppress-
libiberty.patch

GCC-2 (2.95.3):
ftp://ftp_gnu.org/pub/gnu/gcc/

GCC-2 Patch:
http://ww. linuxfromscratch.org/patches/Ifs/5.0/gcc-2.95.3-2_patch

GCC-2 No-Fixincludes Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/gcc-2.95.3-no-fixinc.patch

GCC-2 Return-Type Patch:

http://ww. linuxfromscratch.org/patches/1fs/5.0/gcc-2.95.3-returntype-
fix.patch

226

Contents of GCC

The GCC package contains the GNU compiler collection, including the C and C++
compilers.

Installed programs: c++, cc (link to gcc), ccl, cclplus, collect2, cpp, g++, gee, gecbug,
and gcov

Installed libraries: libgce.a, libgec_eh.a, libgee_s.so, libstde++.[a,s0] and libsupc++.a

Short descriptions

cpp isthe C preprocessor. It is used by the compiler to have the #include and #define
and such statements expanded in the source files.

g++ isthe C++ compiler.

gcec isthe C compiler. It is used to translate the source code of a program into assembly
code.

gecbug is a shdll script used to help create good bug reports.

gecov is acoveragetesting tool. It is used to analyze programs to find out where
optimizations will have the most effect.

libgcc* contains run-time support for gec.
libstdc++ is the standard C++ library. It contains many frequently-used functions.

libsupc++ provides supporting routines for the c++ programming language.

GCC Installation Dependencies

GCC depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, Gettext, Glibc,
Grep, Make, Perl, Sed, Texinfo.

Gettext

For installation instructions see the Section called Installing Gettext-0.12.1 in Chapter
6.

Official Download Location

Gettext (0.12.1):
ftp://ftp_gnu.org/gnu/gettext/

227

Contents of Gettext

The Gettext package is used for internationalization and |localization. Programs can be
compiled with Native Language Support (NLS) which enable them to output messages
in the user's native language.

Installed programs: autopoint, config.charset, config.rpath, gettext, gettextize,
hostname, msgattrib, msgcat, msgcmp, msgcomm, msgconv, msgen, msgexec,

msgfilter, msgfmt, msggrep, msginit, msgmerge, msgunfmt, msgunig, ngettext,
project-id, team-address, trigger, urlget, user-email and xgettext

Installed libraries: libasprintf[a,so], libgettextlib[a,so], libgettextpo[a,so] and
libgettextsrc[a,so]

Short descriptions
autopoint copies standard gettext infrastructure files into a source package.
config.char set outputs a system-dependent table of character encoding aliases.

config.rpath outputs a system-dependent set of variables, describing how to set the
runtime search path of shared libraries in an executable.

gettext transates a natural language message into the user's language, by looking up
the translation in a message catalog.

gettextize copies all standard Gettext files into the given top-level directory of a
package, to begin internationalizing it.

hostname displays a network hostname in various forms.

msgattrib filters the messages of a translation catalog according to their attributes and
manipulates the attributes.

msgcat concatenates and merges the given .po files.

msgcmp compares two . po files to check that both contain the same set of msgid
strings.

msgcomm finds the messages that are common to to the given .po files.
msgconv converts atranglation catalog to a different character encoding.
msgen creates an English translation catal og.

msgexec applies a command to all trandations of a tranglation catal og.
msgfilter applies afilter to all translations of a trandation catal og.

msgfmt generates a binary message catalog from from a translation catalog.

msggr ep extracts all messages of a trandation catalog that match a given pattern or
belong to some given sourcefiles.

228

msginit creates a new .po file, initializing the meta information with values from the
user's environment.

msgmer ge combines two raw translations into asinglefile.
msgunfmt decompiles a binary message catalog into raw translation text.
msguniq unifies duplicate translations in a translation catal og.

ngettext displays native language trandations of a textual message whose grammati cal
form depends on a number.

Xgettext extracts the translatable message lines from the given sourcefiles, to make the
first trandation template.

libasprintf defines the autosprintf class which makes C formatted output routines
usablein C++ programs, for use with the <string> strings and the <iostream> streams.

libgettextlib is a private library containing common routines used by the various
gettext programs. They're not meant for general use.

libgettextpo is used to write specialized programs that process PO files. Thislibrary is
used when the standard applications shipped with gettext won't suffice (such as
msgcomm, msgemp, msgattrib and msgen).

libgettextsrc is a private library containing common routines used by the various
gettext programs. They're not meant for general use.

Gettext Installation Dependencies

Gettext depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc,
Grep, Make, Sed.

Glibc

For installation instructions see the Section called Installing Glibc-2.3.2 in Chapter 6.

Official Download Location

Glibc (2.3.2):
ftp://ftp_gnu.org/gnu/glibc/

Glibc-linuxthreads (2.3.2):
ftp://ftp_gnu.org/gnu/glibc/

Glibc Sscanf Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/glibc-2.3.2-sscanf-1.patch

229

Contents of Glibc

Glibc isthe C library that provides the system calls and basic functions such as open,
malloc, printf, etc. The C library is used by all dynamically linked programs.

Installed programs: catchsegv, gencat, getconf, getent, glibcbug, iconv, iconvconfig,
Idconfig, I1dd, Iddlibc4, locale, localedef, mtrace, nscd, nscd_nischeck, pcprofiledump,
pt_chown, rpcgen, rpcinfo, sin, sprof, tzsdect, xtrace, zdump and zic

Installed libraries: 1d.so, libBrokenL ocale.[a,s0], libSegFault.so, libanl.[a,s0], libbsd-
compat.a, libc.[a,s0], libc_nonshared.a, libcrypt.[a,s0], libdl.[a,s0], libg.a, libieee.a,
libm.[a,s0], libmcheck.a, libmemusage.so, libnsl.a, libnss_compat.so, libnss_dns.so,
libnss _files.so, libnss_hesiod.so, libnss _nis.so, libnss_nisplus.so, libpcprofile.so,
libpthread.[a,s0], libresolv.[a,s0], librpcsve.a, librt.[a,so], libthread _db.so and
libutil.[a,s0]

Short descriptions

catchsegv can be used to create a stack trace when a program terminates with a
segmentation fault.

gencat generates message catal ogues.

getconf displays the system configuration values for filesystem specific variables.
getent gets entries from an administrative database.

glibcbug creates a bug report and mails it to the bug email address.

iconv performs character set conversion.

iconvconfig creates fastloading iconv modul e configuration file.

Idconfig configures the dynamic linker runtime bindings.

Idd reports which shared libraries are required by each given program or shared
library.

Iddlibc4 assists Idd with object files.

locale is a Perl program that tells the compiler to enable or disable the use of POSIX
locales for built-in operations.

localedef compiles |ocal e specifications.
mtrace...

nscd is a name service cache daemon providing a cache for the most common name
Service requests.

nscd_nischeck checks whether or not secure mode is necessary for NIS+ lookup.
pcprofiledump dumps information generated by PC profiling.

230

pt_chown is a helper program for grantpt to set the owner, group and access
permissions of a slave pseudo terminal.

rpcgen generates C code to implement the RPC protacol.
rpcinfo makes an RPC call to an RPC server.

sin is used to make symbolic links. The program is statically linked, so it is useful for
making symbolic links to dynamic libraries if the dynamic linking system for some
reason is nonfunctional.

sprof reads and displays shared object profiling data.

tzselect asks the user about the location of the system and reports the corresponding
time zone description.

xtrace traces the execution of a program by printing the currently executed function.
zdump is the time zone dumper.

zic is the time zone compiler.

Id.so is the helper program for shared library executables.

libBrokenL ocaleis used by programs, such as Mozilla, to solve broken locales.
libSegFault is a segmentation fault signal handler. It tries to catch segfaults.

libanl is an asynchronous name lookup library.

libbsd-compat provides the portability needed in order to run certain BSD programs
under Linux.

libcisthe main C library — a collection of commonly used functions.
libcrypt isthe cryptography library.

libdl isthe dynamic linking interface library.

libgisaruntimelibrary for g++.

libieee is the IEEE floating point library.

libm is the mathematical library.

libmcheck contains code run at boot.

libmemusage is used by memusage to help collect information about the memory
usage of a program.

libnsl is the network serviceslibrary.

libnss* are the Name Service Switch libraries, containing functions for resolving host
names, user names, group names, aliases, services, protocols,and the like.

libpcpr ofile contains profiling functions used to track the amount of CPU time spent
in which source code lines.

libpthread is the POSIX threads library.

231

libresolv contains functions for creating, sending, and interpreting packets to the
Internet domain name servers.

libr pcsvecontains functions providing miscellaneous RPC services.

librt contains functions providing most of the interfaces specified by the POSIX.1b
Realtime Extension.

libthread_db contains functions useful for building debuggers for multi-threaded
programs.

libutil contains code for "standard" functions used in many different Unix utilities.

Glibc Installation Dependencies

Glibc depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep,
Make, Perl, Sed, Texinfo.

Grep
For installation instructions see the Section called Installing Grep-2.5.1 in Chapter 6.

Official Download Location

Grep (2.5.2):
ftp://ftp_gnu.org/gnu/grep/

Contents of Grep
Grep is a program used to print lines from a file matching a specified pattern.
Installed programs: egrep (link to grep), fgrep (link to grep) and grep

Short descriptions

egrep prints lines matching an extended regular expression.
fgrep prints lines matching a list of fixed strings.

grep prints lines matching a basic regular expression.

Grep Installation Dependencies

Grep depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Make, Sed,
Texinfo.

232

Groff

For installation instructions see the Section called Installing Groff-1.19 in Chapter 6.

Official Download Location

Groff (1.19):
ftp://ftp_gnu.org/gnu/groff/

Contents of Groff

The Groff package includes several text processing programs for text formatting. Groff
translates standard text and special commands into formatted output, such aswhat you
seein amanual page.

Installed programs: addftinfo, afmtodit, egn, eqn2graph, gegn (link to egn), grn,
groavi, groff, groffer, grog, grolbp, grolj4, grops, grotty, gtbl (link to thl), hpftodit,
indxbib, Ikbib, lookbib, mmroff, negn, nroff, pfbtops, pic, pic2graph, post-grohtml,
pre-grohtml, refer, soelim, thl, tfmtodit, troff and zsoelim (link to soelim)

Short descriptions

addftinfo reads a troff font file and adds some additional font-metric information that
is used by the groff system.

afmtodit creates afont filefor use with groff and grops.

eqn compiles descriptions of equations embedded within troff input files into
commands that are understood by troff.

eqn2gr aph converts an EQN equation into a cropped image.
grnisagroff preprocessor for gremlin files.
grodvi isadriver for groff that produces TeX dvi format.

groff is afront-end to the groff document formatting system. Normally it runs the troff
program and a post-processor appropriate for the selected device.

groffer displays groff files and man pages on X and tty.

grog reads files and guesses which of the groff options -g, -man, -me, -mm, -ms, -p, -S,
and -t arerequired for printing files, and reports the groff command including those
options.

grolbp isagroff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser
printers).

grolj4isadriver for groff that produces output in PCL5 format suitable for an HP
Laserjet 4 printer.

grops tranglates the output of GNU troff to Postscript.

233

grotty translates the output of GNU troff into a form suitable for typewriter-like
devices.

gtbl is the GNU implementation of tbl.
hpftodit creates afont file for use with groff -Tlj4 from an HP-tagged font metric file.

indxbib makes an inverted index for the bibliographic databases a specified file for use
with refer, lookbib, and Ikbib.

Ikbib searches bibliographic databases for references that contain specified keys and
reports any references found.

lookbib prints a prompt on the standard error (unless the standard input is not a
terminal), reads from the standard input a line containing a set of keywords, searches
the bibliographic databases in a specified file for references containing those
keywords, prints any references found on the standard output and repeats this process
until the end of input.

mmr off is a simple preprocessor for groff.

negn formats equations for ascii output.

nroff is a script that emulates the nroff command using groff.
pfbtops translates a Postscript font in .pfb format to ASCII.

pic compiles descriptions of pictures embedded within troff or TeX input filesinto
commands understood by TeX or troff.

pic2gr aph converts a PIC diagram into a cropped image.
pre-grohtml translates the output of GNU troff to html.
post-grohtml translates the output of GNU troff to html.

refer copies the contents of a file to the standard output, except that lines between .|
and .] areinterpreted as citations, and lines between .R1 and .R2 areinterpreted as
commands about how citations are to be processed.

soelim reads files and replaces lines of the form .so file by the contents of the
mentioned file.

tbl compiles descriptions of tables embedded within troff input files into commands
that are understood by troff.

tfmtodit creates afont file for use with groff -Tdvi.

troff is highly compatible with Unix troff. Usually it should be invoked using the groff
command, which will also run preprocessors and post-processors in the appropriate
order and with the appropriate options.

zsoelim is the GNU implementation of soelim.

234

Groff Installation Dependencies

Groff depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Sed.

Grub
For installation instructions see the Section called Installing Grub-0.93 in Chapter 6.

Official Download Location
Grub (0.93):
ftp://alpha.gnu.org/pub/gnu/grub/

Grub Gee33 Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/grub-0.93-gcc33-1.patch

Contents of Grub
The Grub package contains a bootloader.
Installed programs: grub, grub-install, grub-md5-crypt, grub-terminfo and mbchk

Short descriptions

grub is the GRand Unified Bootloader's command shell.
grub-install installs GRUB on the given device.

gr ub-md>5-crypt encrypts a password in MD5 format.

gr ub-ter minfo generates a terminfo command from a terminfo name. It can be used if
you have an uncommon terminal.

mbchk checks the format of a multiboot kernel.

Grub Installation Dependencies

Grub depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Gzip

For installation instructions see the Section called Installing Gzip-1.3.5 in Chapter 6.

235

Official Download Location

Gzip (1.3.5):
ftp://alpha.gnu.org/gnu/gzip/

Contents of Gzip

The Gzip package contains programs to compress and decompress files using the
Lempel-Ziv coding (LZ77).

Installed programs: gunzip (link to gzip), gzexe, gzip, uncompress (link to gunzip),
zcat (link to gzip), zcmp, zdiff, zegrep, zfgrep, zforce, zgrep, zless, zmore and znew

Short descriptions

gunzip decompresses gzipped files.

gzexe is used to create self-uncompressing executable files.

gzip compresses the given files, using Lempel-Ziv (LZ77) coding.
zcat uncompresses the given gzipped files to standard output.
zcmp runs cmp on gzipped files.

zdiff runs diff on gzipped files.

zegrep runs egrep on gzipped files.

zfgrep runs fgrep on gzipped files.

zforceforces a.gz extension on all given files that are gzipped files, so that gzip will
not compress them again. This can be useful when file names were truncated during a
filetransfer.

zgrep runs grep on gzipped files.
zless runs less on gzipped files.
zmor e runs more on gzipped files.

znew recompresses files from compress format to gzip format — .Z to .gz.

Gzip Installation Dependencies
Gzip depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Inetutils

For installation instructions see the Section called Installing Inetutils-1.4.2 in Chapter
6.

236

Official Download Location

Inetutils (1.4.2):
http://freshmeat.net/projects/inetutils/

Contents of Inetutils
The I netutils package contains network clients and servers.

Installed programs: ftp, ping, rcp, rlogin, rsh, talk, telnet and tftp

Short descriptions

ftp isthe ARPANET file transfer program.

ping sends echo-request packets and reports how long the replies take.
rcp does remote file copy.

rlogin does remote login.

rsh runs aremote shell.

talk is used to chat up another user.

telnet isan interface to the TELNET protocol.

tftp isatrivial filetransfer program.

Inetutils Installation Dependencies

Inetutils depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Kbd

For installation instructions see the Section called Installing Kbd-1.08 in Chapter 6.

Official Download Location

Kbd (1.08):
ftp://ftp_win.tue.nl/pub/linux-local/utils/kbd/

Kbd More-Programs Patch:

http://ww . linuxfromscratch.org/patches/1fs/5.0/kbd-1.08-more-programs.patch

237

Contents of Kbd
Kbd contains keytable files and keyboard utilities.

Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, getunimap,
kbd_mode, kbdrate, loadkeys, loadunimap, mapscrn, openvt, psfaddtable (link to
psfxtable), psfgettable (link to psfxtable), psfstriptable (link to psfxtable), psfxtable,
resizecons, setfont, setkeycodes, setleds, setlogcons, setmetamode, setvesablank,
showconsol efont, showkey, unicode_start and unicode_stop

Short descriptions

chvt changes the foreground virtual terminal.

deallocvt deallocates unused virtual terminals.

dumpkeys dumps the keyboard tranglation tables.

fgconsol e prints the number of the active virtual terminal.
getkeycodes prints the kernel scancode-to-keycode mapping table.
getunimap prints the currently used unimap.

kbd_mode reports or sets the keyboard mode.

kbdr ate sets the keyboard repeat and delay rates.

loadkeys |oads the keyboard translation tables.

loadunimap loads the kernel unicode-to-font mapping table.

mapscr n is an obsolete program that used to load a user-defined output character
mapping tableinto the console driver. Thisis now done by setfont.

openvt startsa program on a new virtual terminal (VT).

psf* are aset of tools for handling Unicode character tables for console fonts.
r esizecons changes the kernel idea of the console size.

setfont lets you change the EGA/VGA fonts on the console.

setkeycodes loads kernel scancode-to-keycode mapping table entries, useful if you
have some unusual keys on your keyboard.

setleds sets the keyboard flags and LEDs. Many people find it useful to have
NumL ock on by default, setleds +num achievesthis.

setlogcons sends kernel messages to the console.
setmetamode defines the keyboard meta key handling.

setvesablank lets you fiddle with the built-in hardware screensaver (no toasters, just a
blank screen).

showconsolefont shows the current EGA/VGA console screen font.

238

showkey reports the scancodes and keycodes and ASCII codes of the keys pressed on
the keyboard.

unicode_start puts the keyboard and console in unicode mode.

unicode_stop reverts keyboard and consol e from unicode mode.

Kbd Installation Dependencies

Kbd depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Flex, GCC, Gettext, Glibc,
Grep, Gzip, M4, Make, Sed.

Less
For installation instructions see the Section called Installing Less-381 in Chapter 6.

Official Download Location

Less (381):
ftp://ftp_gnu.org/gnu/less/

Contents of Less

Lessisafile pager, or text viewer. It displays the contents of afile, or stream, and has
the ability to scroll. Less has a few features not included in themore pager, such asthe
ability to scroll backwards.

Installed programs: less, lessecho and lesskey

Short descriptions

lessisafileviewer or pager. It displays the contents of the given file, letting you scroll
around, find strings, and jump to marks.

lessecho is needed to expand metacharacters, such as* and ?, in filenames on Unix
systems.

lesskey is used to specify the key bindings for less.

Less Installation Dependencies

Less depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

239

LFS-Bootscripts

For installation instructions see the Section called Installing LFS-Bootscripts-1.12 in
Chapter 6.

Official Download Location

LFS-Bootscripts (1.12):
http://downloads. linuxfromscratch.org/

Contents of LFS-bootscripts

The LFS-Bootscripts package contains SysV init style shell scripts. These scripts do
various tasks such as check filesystem integrity during boot, load keymaps, set up
networks and halt processes at shutdown.

Installed scripts: checkfs, cleanfs, functions, halt, ifdown, ifup, loadkeys, localnet,
mountfs, mountproc, network, rc, reboot, sendsignals, setclock, swap, sysklogd and
template

Short descriptions

The checkfs script checks the file systems just before they are mounted (with the
exception of journal and network based file systems).

The cleanfs script removes files that shouldn't be preserved between reboots, such as
thosein /var/run/ and /var/lock/. It re-creates /var/run/utmp and removes the
possibly present /etc/nologin, /fastboot and /forcefsck files.

The functions script contains functions shared among different scripts, such as error
and status checking.

The halt script halts the system.
Theifdown and ifup scripts assist the network script with network devices.

The loadkeys script loads the keymap table you specified as proper for your keyboard
layout.

Thelocalnet script sets up the system's hostname and |ocal loopback device.

The mountfs script mounts all file systems that aren't marked noauto or aren't network
based.

The mountproc script is used to mount the proc filesystem.

The networ k script sets up network interfaces, such as network cards, and sets up the
default gateway where applicable.

Therc script is the master runlevel control script. It isresponsible for running all the
other scripts one-by-one in a specific sequence.

240

Thereboot script reboots the system.

The sendsignals script makes sure every process is terminated before the system
reboots or halts.

The setclock script resets the kernel clock to localtime in case the hardware clock isn't
set to GMT time.

The swap script enables and disables swap files and partitions.
The sysklogd script starts and stops the system and kernel log daemons.

Thetemplate script is atemplate you can use to create your own bootscripts for your
other daemons.

LFS-Bootscripts Installation Dependencies
Bzip2 depends on: Bash, Coreutils.

Lfs-Utils
For installation instructions see the Section called Installing Lfs-Utils-0.3 in Chapter 6.

Official Download Location

Lfs-utils (0.3):
http://ww . linuxfromscratch.org/~winkie/downloads/Ifs-utils/

Contents of Lfs-Utils

The Lfs-Utils package contains some miscel laneous programs used by various
packages, but are not large enough to warrant their own individual package.

Installed programs: mktemp, tempfile, http-get and iana-net
Installed files: protocols, services

Short descriptions
mktemp creates temporary filesin a secure manner. It is used in scripts.

tempfile creates temporary filesin aless secure manner than mktemp. It isinstalled for
backwards-compatibility.

The http-get script takes advantage of a little known feature of bash called "net
redirection”. It is used to download from websites without using any other programs.

iana-net uses the http-get script to simplify the process of procuring IANA's services
and protocols configuration files.

241

Lfs-Utils Installation Dependencies
(No dependencies checked yet.)

Libtool
For installation instructions see the Section called Installing Libtool-1.5 in Chapter 6.

Official Download Location

Libtool (1.5):
ftp://ftp_gnu.org/gnu/libtool/

Contents of Libtool

GNU libtool is ageneric library support script. Libtool hides the complexity of using
snared libraries behind a consistent, portable interface.

Installed programs: libtool and libtoolize
Installed libraries: libltdl.[a,s0].

Short descriptions

libtool provides generalized library-building support services.
libtoolize provides a standard way to add libtool support to a package.
libltdl hides the various difficulties of dlopening libraries.

Libtool Installation Dependencies
Libtool depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Linux (the kernel)
For installation instructions see the Section called Installing Linux-2.4.22 in Chapter 8.

Official Download Location

Linux (2.4.22):
ftp://ftp_kernel .org/pub/linux/kernel/

242

Contents of Linux

The Linux kernel is at the core of every Linux system. It's what makes Linux tick.
When a computer is turned on and boots a Linux system, the very first piece of Linux
software that gets loaded is the kernel. The kernel initializes the system's hardware
components: serial ports, paralld ports, sound cards, network cards, IDE controllers,
SCSI controllersand alot more. In a nutshell the kernel makes the hardware available
so that the software can run.

Installed files: the kernal and the kernel headers

Short descriptions

Thekernel isthe engine of your GNU/Linux system. When switching on your box, the
kernel isthefirst part of your operating system that gets loaded. It detects and
initializes all the components of your computer's hardware, then makes these
components available as a tree of files to the software, and turns asingle CPU into a
multi-tasking machine capable of running scores of programs seemingly at the same
time.

The kernel headers define the interface to the services that the kernel provides. The
headersin your system's include directory should always be the ones against which
Glibc was compiled and should therefore not be replaced when upgrading the kernel.

Linux Installation Dependencies

Linux depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make,
Modutils, Perl, Sed.

M4

For installation instructions see the Section called Installing M4-1.4 in Chapter 6.

Official Download Location

M4 (1.4):
ftp://ftp_gnu.org/gnu/ma/

Contents of M4

M4 isamacro processor. It copies input to output, expanding macros as it goes.
Macros are either built-in or user-defined and can take any number of arguments.
Besides just doing macro expansion, m4 has built-in functions for including named
files, running Unix commands, doing integer arithmetic, manipulating text in various
ways, recursion, etc. The md program can be used either as a front-end to a compiler or
as amacro processor in its own right.

243

Installed program: M4 248

Short descriptions

m4 copies the given files while expanding the macros that they contain. These macros
are ether built-in or user-defined and can take any number of arguments. Besides just
doing macro expansion, m4 has built-in functions for including named files, running
Unix commands, doing integer arithmetic, manipulating text in various ways,
recursion, and so on. The m4 program can be used either as a front-end to a compiler
Or as amacro processor in its own right.

M4 Installation Dependencies

M4 depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Perl, Sed.

Make
For installation instructions see the Section called Installing Make-3.80 in Chapter 6.

Official Download Location

Make (3.80):
ftp://ftp_gnu.org/gnu/make/

Contents of Make

Make determines, automatically, which pieces of a large program need to be
recompiled and issues the commands to recompile them.

Installed program: Make 249

Short description

make automatically determines which pieces of a large package need to be recompiled,
and then issues the relevant commands.

Make Installation Dependencies
Make depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Sed.

244

MAKEDEV

For installation instructions see the Section called Creating devices (Makedev-1.7) in
Chapter 6.

Official Download Location

MAKEDEV (1.7):
http://downloads. linuxfromscratch.org/

Contents of MAKEDEV

The MAKEDEYV script creates the static device nodes which usually reside in the /dev
directory. Detailed information about device nodes may be found in the
Documentation/devices. txt file under the Linux kernel sourcetree.

Installed script: MAKEDEV 250

Short description

MAKEDEYV isascript for creating the necessary static device nodes, usually residing
in the /dev directory.

MAKEDEYV Installation Dependencies
Make depends on: Bash, Coreutils.

Man
For installation instructions see the Section called Installing Man-1.5m2 in Chapter 6.

Official Download Location

Man (1.5m2):
ftp://ftp_win.tue.nl/pub/linux-local/utils/man/

Man 80-Columns Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/man-1.5m2-80cols.patch

Man Manpath Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/man-1.5m2-manpath.patch

Man Pager Patch:
http://ww.linuxfromscratch.org/patches/1fs/5.0/man-1.5m2-pager.patch

245

Contents of Man
Man is aman pager.
Installed programs: apropos, makewhatis, man, man2dvi, man2html and whatis

Short descriptions

apropos searches the whatis database and displays the short descriptions of system
commands that contain a given string.

makewhatis builds the whatis database. It reads all the manual pages in the manpath
and for each page writes the name and a short description in the whatis database.

man formats and displays the requested on-line manual page.
man2dvi converts a manual page into dvi format.
man2html converts amanual page into html.

whatis searches the whatis database and displays the short descriptions of system
commands that contain the given keyword as a separate word.

Man Installation Dependencies
Man depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Sed.

Man-pages

For installation instructions see the Section called Installing Man-pages-1.60 in
Chapter 6.

Official Download Location

Man-pages (1.60):
ftp://ftp_kernel.org/pub/linux/docs/manpages/

Contents of Man-pages

The Man-pages package contains over 1200 manual pages. This documentation details
the C and C++ functions, describes a few important devicefiles and provides
documents which would otherwise be missing from other packages.

Installed files: various manual pages

246

Short description

Examples of provided manual pages are the pages describing all the C and C++
functions, important device files, and important configuration files.

Man-pages Installation Dependencies
Man depends on: Bash, Coreutils, Make.

Modutils

For installation instructions see the Section called Installing Modutils-2.4.25 in
Chapter 6.

Official Download Location

Modutils (2.4.25):
ftp://ftp_kernel .org/pub/linux/utils/kernel/modutils/

Contents of Modutils

The Modutils package contains programs that you can use to work with kernel
modules.

Installed programs: depmod, genksyms, insmod, insmod_ksymoops_clean, kallsyms
(link to insmod), kernelversion, ksyms (link to insmod), Ismod (link to insmod),
modinfo, modprobe (link to insmod) and rmmod (link to insmod)

Short descriptions

depmod creates a dependency file, based on the symbolsit finds in the existing set of
modules. This dependency file is used by modprobe to automatically load the required
modules.

genksyms generates symbol version information.
insmod installs a loadable module in the running kernel.

insmod_ksymoops_clean deletes saved ksyms and modules not accessed for two
days.

kallsyms extracts all kernel symbols for debugging.

ker nelver sion reports the major version of the running kernel.
ksyms displays exported kernel symbols.

Ismod shows which modules are |oaded.

247

modinfo examines an object file associated with a kernel module and displays any
information that it can glean.

modpr obe uses a dependency file, created by depmod, to automatically load the
relevant modules.

rmmod unloads modules from the running kernel.

Modutils Installation Dependencies

Modutils depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Flex, GCC, Glibc,
Grep, M4, Make, Sed.

Ncurses
For installation instructions see the Section called Installing Ncurses-5.3 in Chapter 6.

Official Download Location

Ncurses (5.3):
ftp://ftp_gnu.org/gnu/ncurses/

Ncurses Etip Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/ncurses-5.3-etip-2.patch

Ncurses Vsscanf Patch:
http://ww . linuxfromscratch.org/patches/Ifs/5.0/ncurses-5.3-vsscanf._patch

Contents of Ncurses

The Ncurses package provides character and terminal handling libraries, including
panels and menus.

Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), reset
(link to tset), tack, tic, toe, tput and tset

Installed libraries: libcurses.[a,50] (link to libncurses.[a,50]), libform.[a,s0],
libmenu.[a,s0], libncurses++.a, libncurses.[a,s0], libpandl.[a,s0]

Short descriptions

captoinfo converts atermcap description into a terminfo description.
clear clearsthe screen, if thisis possible.

infocmp compares or prints out terminfo descriptions.

infotocap converts aterminfo description into a termcap description.

248

reset reinitializes aterminal to its default values.

tack is theterminfo action checker. It is mainly used to test the correctness of an entry
in the terminfo database.

tic isthe terminfo entry-description compiler. It trandates a terminfo file from source
format into the binary format needed for the ncurses library routines. A terminfo file
contains information on the capabilities of a certain terminal.

toelists all available terminal types, for each giving its primary name and its
description.

tput makes the values of terminal-dependent capabilities available to the shell. It can
also be used to reset or initialize aterminal, or report its long name.

tset can be used to initialize terminals.

libncurses* contain functions to display text in many complicated ways on a terminal
screen. A good example of the use of these functions is the menu displayed during the
kernel's make menuconfig.

libfor m* contain functions to implement forms.
libmenu* contain functions to implement menus.
libpanel* contain functions to implement panels.

Ncurses Installation Dependencies

Ncurses depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep,
Make, Sed.

Net-tools

For installation instructions see the Section called Installing Net-tools-1.60 in Chapter
6.

Official Download Location

Net-tools (1.60):
http://ww.tazenda.demon.co.uk/phil/net-tools/

Net-tools Mii-Tool-Gee33 Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/net-tools-1.60-miitool-gcc33-
1_patch

Contents of Net-tools

The Net-tools package contains a collection of programs which form the base of Linux
networking.

249

Installed programs: arp, dnsdomainname (link to hostname), domainname (link to
hostname), hostname, ifconfig, nameif, netstat, nisdomainname (link to hostname),
plipconfig, rarp, route, sattach and ypdomainname (link to hostname)

Short descriptions

arp is used to manipulate the kernel's ARP cache, usualy to add or delete an entry, or
to dump the entire cache.

dnsdomainname reports the system's DNS domain name.

domainname reports or sets the system's NIS/YP domain name.

hostname reports or sets the name of the current host system.

ifconfig is the main utility for configuring network interfaces.

nameif names network interfaces based on MAC addresses.

netstat is used to report network connections, routing tables, and interface statistics..
nisdomainname does the same as domainname.

plipconfig is used to fine tune the PLIP device parameters, to improveits performance.
rarp is used to manipulate the kernel's RARP table.

route is used to manipulate the IP routing table.

dattach attaches a network interface to a serial line. This allows you to use normal
terminal lines for point-to-point links to other computers.

ypdomainname does the same as domainname.

Net-tools Installation Dependencies
Net-tools depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make.

Patch
For installation instructions see the Section called Installing Patch-2.5.4 in Chapter 6.

Official Download Location

Patch (2.5.4):
ftp://ftp_gnu.org/gnu/patch/

250

Contents of Patch

The patch program modifies a file according to a patch file. A patch fileusually isa
list, created by the diff program, that contains instructions on how an original file
needs to be modified.

Installed program: Patch 255

Short description

patch modifies files according to a patch file. A patch file normally is a difference
listing created with the diff program. By applying these differences to the original files,
patch creates the patched versions. Using patches instead a entire new tarballs to keep
your sources up-to-date can save you a lot of download time.

Patch Installation Dependencies
Patch depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Perl
For installation instructions see the Section called Installing Perl-5.8.0 in Chapter 6.

Official Download Location
Perl (5.8.0):
http://ww._perl.com/

Perl Libc Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/per1-5.8.0-11bc-3.patch

Contents of Perl

The Perl package contains perl, the Practical Extraction and Report Language. Perl
combines some of the best features of C, sed, awk and sh into one powerful language.

Installed programs: a2p, c2ph, dprofpp, enc2xs, find2perl, h2ph, h2xs, libnetcfg, perl,
perl5.8.0 (link to perl), perlbug, perlce, perldoc, perlivp, piconv, pl2pm, pod2html,
pod2latex, pod2man, pod2text, pod2usage, podchecker, podselect, psed (link to s2p),
pstruct (link to c2ph), s2p, splain and xsubpp

Installed libraries: (too many to name)

251

Short descriptions

azZp trandlates awk to perl.

c2ph dumps C structures as generated from "cc -g -S" stabs.
dprofpp displays perl profile data.

en2cxs builds a Perl extension for the Encode module, from either Unicode Character
Mappings or Tcl Encoding Files.

find2per| tranglates find commands to perl.

h2ph converts .h C header filesto .ph Perl header files.
h2xs converts .h C header files to Perl extensions.
libnetcfg can be used to configure the libnet.

perl combines some of the best features of C, sed, awk and sh into a single swiss-army
language.

perlbug is used to generate bug reports about Perl or the modules that come with it,
and mail them.

perIcc generates executables from Perl programs.

perldoc displays a piece of documentation in pod format that is embedded in the perl
installation tree or in a perl script.

perlivp is the Perl Installation Verification Procedure. It can be used to verify that Perl
and its libraries have been installed correctly.

piconv is a Perl version of the character encoding converter iconv.
pl2pm isarough tool for converting Perl4 .pl files to Perl5 .pm modules.
pod2html converts files from pod format to HTML format.
pod2latex converts files from pod format to LaTeX format.
pod2man converts pod data to formatted *roff input.

pod2text converts pod data to formatted ASCII text.

pod2usage prints usage messages from embedded pod docs in files.
podchecker checks the syntax of pod format documentation files.
podselect displays selected sections of pod documentation.

psed is a Perl version of the stream editor sed.

pstruct dumps C structures as generated from "cc -g -S" stabs.

S2p translates sed to perl.

splain is used to force verbose warning diagnostics in perl.

xsubpp converts Perl XS code into C code.

252

Perl Installation Dependencies

Perl depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make,
Sed.

Procinfo
For installation instructions see the Section called Installing Procinfo-18 in Chapter 6.

Official Download Location

Procinfo (18):
ftp://ftp._cistron.nl/pub/people/svn/

Contents of Procinfo

The procinfo program gathers system data, such as memory usage and |RQ numbers,
from the /proc directory and formats this data in a meaningful way.

Installed programs: Isdev, procinfo and socklist

Short descriptions
Isdev lists the devices present in your system, and which IRQs and 1O ports they use.

procinfo displays an overview of some of the info present in the virtual proc
filesystem.

socklist lists the open sockets, reporting their type, portnumber, and other specifics.

Procinfo Installation Dependencies
Procinfo depends on: Binutils, GCC, Glibc, Make, Ncurses.

Procps

For installation instructions see the Section called Installing Procps-3.1.11 in Chapter
6.

Official Download Location

Procps (3.1.11):
http://procps.sourceforge.net/

253

Procps L ocale Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/procps-3.1.11-locale-
fix.patch

Contents of Procps

The Procps package provides programs to monitor and halt system processes. Procps
gathers information about processes via the /proc directory.

Installed programs: free, kill, pgrep, pkill, pmap, ps, skill, snice, sysctl, tload, top,
uptime, vmstat, w and watch

Installed library: libproc.so

Short descriptions

free reports the amount of free and used memory in the system, both physical and
swap memory.

kill is used to send signals to processes.

parep looks up processes based on their name and other attributes.

pkill signals processes based on their name and other attributes.

pmap reports the memory map of the given process.

ps gives a snapshot of the current processes.

skill sends signals to processes matching the given criteria

snice changes the scheduling priority of processes matching the given criteria.
sysctl modifies kernel parameters at run time.

tload prints a graph of the current system load average.

top displays the top CPU processes. It provides an ongoing look at processor activity
inreal time.

uptime reports how long the system has been running, how many users arelogged on,
and the system load averages.

vmestat reports virtual memory statistics, giving information about processes, memory,
paging, block 10, traps, and CPU activity.

w shows which users are currently logged on, where and since when.

watch runs a given command repeatedly, displaying the first screenful of its output.
This alows you to watch the output change over time.

libpr oc contains the functions used by most programs in this package.

254

Procps Installation Dependencies
Procps depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, Ncurses.

Psmisc
For installation instructions see the Section called Installing Psmisc-21.3 in Chapter 6.

Official Download Location

Psmisc (21.3):
http://download.sourceforge.net/psmisc/
ftp://download. sourceforge.net/pub/sourceforge/psmisc/

Contents of Psmisc
The Psmisc package contains three programs which help manage the /proc directory.
Installed programs: fuser, killall and pstree

Short descriptions
fuser reports the PIDs of processes that use the given files or filesystems.

killall kills processes by name. It sends a signal to all processes running any of the
given commands.

pidof reports the PIDs of the given programs. (Not this pidof program is used,
however, but the one from Sysvinit.)

pstree displays running processes as atree.

Psmisc Installation Dependencies

Psmisc depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed.

Sed

For installation instructions see the Section called Installing Sed-4.0.7 in Chapter 6.

255

Official Download Location

Sed (4.0.7):
ftp://ftp_gnu.org/gnu/sed/

Contents of Sed

sed is a stream editor. A stream editor is used to perform basic text transformations on
an input stream (afile or input from a pipeline).

Installed program: Sed 260

Short description

sed is used to filter and transform text filesin a single pass.

Sed Installation Dependencies

Sed depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Texinfo.

Shadow

For installation instructions see the Section called Installing Shadow-4.0.3 in Chapter
6.

Official Download Location
Shadow (4.0.3):
ftp://ftp_pld.org.pl/software/shadow/

Shadow Newgrp Patch:
http://ww . linuxfromscratch.org/patches/1fs/5.0/shadow-4.0.3-newgrp-fix.patch

Contents of Shadow
The Shadow package was created to strengthen the security of system passwords.

Installed programs: chage, chfn, chpasswd, chsh, dpasswd, expiry, faillog, gpasswd,
groupadd, groupdel, groupmod, groups, grpck, grpconv, grpuncony, lastlog, login,
logoutd, mkpasswd, newgrp, newusers, passwd, pwck, pwconv, pwunconv, sg (link to
newgrp), useradd, userdel, usermod, vigr (link to vipw) and vipw

256

Short descriptions

chage is used to change the maximum number of days between obligatory password
changes.

chfn is used to change a user's full name and some other info.

chpasswd is used to update the passwords of a whole series of user accounts in one go.
chsh is used to change a user's default login shell.

dpasswd is used to change dial-up passwords for user login shells.

expiry checks and enforces the current password expiration policy.

faillog is used to examine the log of login failures, to set a maximum number of
failures before an account is blocked, or to reset the failure count.

gpasswd is used to add and delete members and administrators to groups.
groupadd creates a group with the given name.

groupdel deletes the group with the given name.

groupmod is used to modify the given group's name or GID.

groups reports the groups of which the given users are members.

grpck verifies the integrity of the group files, /etc/group and /etc/gshadow.
grpconv creates or updates the shadow group file from the normal group file.
grpunconv updates /etc/group from /etc/gshadow and then deletes the latter.
lastlog reports the most recent login of all users, or of agiven user.

login is used by the system let users sign on.

logoutd is a daemon used to enforce restrictions on log-on time and ports.
mkpasswd encrypts the given password using the also given perturbation.

newgr p is used to change the current GID during a login session.

newusersis used to create or update a whole series of user accounts in one go.
passwd is used to change the password for auser or group account.

pwck verifies the integrity of the password files, /etc/passwd and /etc/shadow.
pwconv creates or updates the shadow password file from the normal password file.
pwunconv updates /etc/passwd from /etc/shadow and then deletes the latter.

sg executes a given command while the user's GID is set to that of the given group.

user add creates a new user with the given name, or updates the default new-user
information.

user del deletes the given user account.

257

user mod is used to modify the given user's login name, UID, shell, initial group, home
directory, and thelike.

vigr can be used to edit the /etc/group or /etc/gshadow files.

vipw can be used to edit the /etc/passwd or /etc/shadow files.
libmisc...

libshadow contains functions used by most programs in this package.

Shadow Installation Dependencies

Shadow depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc,
Grep, Make, Sed.

Sysklogd

For installation instructions see the Section called Installing Sysklogd-1.4.1 in Chapter
6.

Official Download Location

Sysklogd (1.4.1):
http://ww.infodrom.org/projects/sysklogd/

Contents of Sysklogd

The Sysklogd package contains programs for recording system log messages, such as
those reported by the kernel.

Installed programs: klogd and syslogd

Short descriptions
klogd is a system daemon for intercepting and logging kernel messages.

syslogd logs the messages that system programs offer for logging. Every logged
message contains at least a date stamp and a hostname, and normally the program's
name too, but that depends on how trusting the logging daemon istold to be.

Sysklogd Installation Dependencies
Sysklogd depends on: Binutils, Coreutils, GCC, Glibc, Make.

258

Sysvinit
For installation instructions see the Section called Installing Sysvinit-2.85 in Chapter 6.

Official Download Location

Sysvinit (2.85):
ftp://ftp_cistron.nl/pub/people/miquels/sysvinit/

Contents of Sysvinit

The Sysvinit package contains programs to control the startup, running and shutdown
of al other programs.

Installed programs: halt, init, killall5, last, lastb (link to last), mesg, pidof (link to
killall5), poweroff (link to halt), reboot (link to halt), runlevel, shutdown, sulogin,
telinit (link to init), utmpdump and wall

Short descriptions

halt normally invokes shutdown with the -h flag, except when already in runlevel 0,
then it tells the kernel to halt the system. But first it notes in the file /var/log/wtmp that
the system is being brought down.

init is the mother of all processes. It reads its commands from /etc/inittab, which
normally tell it which scripts to run for which runlevel, and how many gettys to spawn.

killall5 sends a signal to all processes, except the processes in its own session — so it
won't kill the shell running the script that called it.

last shows which users last logged in (and out), searching back through thefile
/var/log/wtmp. It can also show system boots and shutdowns, and runlevel changes.

lastb shows the failed login attempts, as logged in /var/log/btmp.

mesg controls whether other users can send messages to the current user's terminal.
pidof reports the PIDs of the given programs.

power off tells the kernel to halt the system and switch off the computer. But see halt.
reboot tells the kernel to reboot the system. But see halt.

runlevel reports the previous and the current runlevel, as noted in the last runlevel
record in /var/run/utmp.

shutdown brings the system down in a secure way, signaling all processes and
notifying all logged-in users.

sulogin allows the superuser to log in. It is normally invoked by init when the system
goesinto single user mode.

259

telinit tellsinit which runlevel to enter.
utmpdump displays the content of the given login filein afriendlier format.
wall writes a message to all logged-in users.

Sysvinit Installation Dependencies
Sysvinit depends on: Binutils, Coreutils, GCC, Glibc, Make.

Tar
For installation instructions see the Section called Installing Tar-1.13.25 in Chapter 6.

Official Download Location

Tar (1.13.25):
ftp://alpha.gnu.org/gnu/tar/

Contents of Tar

Tar isan archiving program designed to store and extract files from an archivefile
known as atar file.

Installed programs: rmt and tar

Short descriptions

rmt is used to remotely manipulate a magnetic tape drive, through an interprocess
communication connection.

tar is used to create and extract files from archives, also known as tarballs.

Tar Installation Dependencies

Tar depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make,
Sed.

Tcl
For installation instructions see the Section called Installing Tcl-8.4.4 in Chapter 5.

260

Official Download Location

Tcl (8.4.4):
http://download.sourceforge.net/tcl/
ftp://download. sourceforge.net/pub/sourceforge/tcl/

Contents of Tcl

The Tcl package contains the Tool Command Language.
Installed programs: tclsh (link to tclsh8.4), tclsh8.4
Installed library: libtcl8.4.s0

Short description
tclsh8.4 is the Tcl command shell.
libtcl8.4.s0 isthe Tcl library.

Tcl Installation Dependencies
Tcl depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Sed.

Texinfo
For installation instructions see the Section called Installing Texinfo-4.6 in Chapter 6.

Official Download Location

Texinfo (4.6):
ftp://ftp_gnu.org/gnu/texinfo/

Contents of Texinfo

The Texinfo package contains programs used for reading, writing and converting Info
documents, which provide system documentation.

Installed programs: info, infokey, install-info, makeinfo, texi2dvi and texindex

Short descriptions

info is used to read Info documents. Info documents are a bit like man pages, but often
go much deeper than just explaining all the flags. Compare for example man tar and
info tar.

261

infokey compiles a source file containing Info customi zations into a binary format.
install-info is used to install Info files. It updates entriesin the Info index file.

makeinfo translates the given Texinfo source documents into various other formats:
Infofiles, plain text, or HTML.

texi2dvi is used to format the given Texinfo document into a device-independent file
that can be printed.

texindex is used to sort Texinfo index files.

Texinfo Installation Dependencies

Texinfo depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed.

Util-linux

For installation instructions see the Section called Installing Util-linux-2.12 in Chapter
6.

Official Download Location

Util-linux (2.12):
http://ftp.cwi_nl/aeb/util-linux/

Contents of Util-linux

The Util-linux package contains a number of miscellaneous utility programs. Some of
the more prominent utilities are used to mount, unmount, format, partition and manage
disk drives, open tty ports and fetch kernel messages.

Installed programs: agetty, arch, blockdev, cal, cfdisk, chkdupexe, col, colcrt, colrm,
column, ctrlaltdel, cytune, ddate, dmesg, €lvtune, fdformat, fdisk, fsck.cramfs,
fsck.minix, getopt, hexdump, hwclock, ipcrm, ipcs, isosize, kill, line, logger, 100k,
losetup, mcookie, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount,
namei, parse.bash, parse.tcsh, pg, pivot_root, ramsize (link to rdev), raw, rdev,
readprofile, rename, renice, rev, rootflags (link to rdev), script, setfdprm, setsid,
setterm, sfdisk, swapoff (link to swapon), swapon, test.bash, test.tcsh, tundp, ul,
umount, vidmode (link to rdev), whereis and write

Short descriptions
agetty opens a tty port, prompts for alogin name, and then invokes the login program.
ar ch reports the machine's architecture.

262

blockdev allows you to call block deviceioctls from the command line.
cal displays a simple calender.

cfdisk is used to manipulate the partition table of the given device.
chkdupexe finds duplicate executabl es.

col filters out reverse line feeds.

colcrt isused to filter nroff output for terminals that lack some capabilities such as
overstriking and half-lines.

colrm filters out the given columns.
column formats a given file into multiple columns.

ctrlaltdel sets the function of the Ctrl+Alt+Del key combination, to a hard or a soft
reset.

cytune was used to tune the parameters of the serial line drivers for Cyclades cards.

ddate gives the Discordian date, or converts the given Gregorian date to a Discordian
one.

dmesg dumps the kernel boot messages.

elvtune can be used to tune the performance and interactiveness of a block device.
fdformat low-level formats a floppy disk.

fdisk could be used to manipulate the partition table of the given device.

fsck.cramfs performs a consistency check on the Cramfs filesystem on the given
device.

fsck.minix performs a consistency check on the Minix filesystem on the given device.
getopt parses options in the given command line.
hexdump dumps the given file in hexadecimal, or in another given format.

hwclock is used to read or set the system's hardware clock (also called the RTC or
BIOS clock).

ipcrm removes the given |PC resource.

ipcs provides IPC status information.

isosi ze reports the size of an is09660 filesystem.

kill terminates the specified process.

line copiesasingleline.

logger enters the given message into the system log.
look displays lines that begin with the given string.

losetup is used to set up and control loop devices.

263

mcookie generates magic cookies, 128-hit random hexadecimal numbers, for xauth.
mkfsis used to build a filesystem on a device (usually a harddisk partition).

mkfs.bfs creates an SCO bfs filesystem.

mkfs.cramfs creates a cramfs filesystem.

mkfs.minix creates a Minix filesystem.

mkswap initializes the given device or file to be used as a swap area.

mor eis afilter for paging through text one screenful at atime. But less is much better.

mount attaches the filesystem on the given device to the given directory in the
system'sfiletree.

namei shows the symbolic links in the given pathnames.

pg displays a text file one screenful at atime.

pivot_root makes the given filesystem the new root filesystem of the current process.
ramsize could be used to set the size of the RAM disk in a bootable image.

rdev could be used to query and set the root device and other things in a bootable
image.

readprofile reads kernel profiling information.

rename renames the given files, replacing a given string with another.
reniceis used to alter the priority of running processes.

rev reverses thelines of agivenfile.

rootflags could be used to set the rootflags in a bootable image.

script makes a typescript of aterminal session, of everything printed to the terminal.
setfdprm sets user-provided floppy disk parameters.

setsid runs the given program in a new session.

setterm is used to set terminal attributes.

sfdisk isadisk partition table manipulator.

swapdev could be used to set the swap device in a bootable image.
swapoff disables devices and files for paging and swapping.

swapon enables devices and files for paging and swapping.

tunelp is used to tune the parameters of the line printer.

ul isafilter for translating underscores into escape sequences indicating underlining
for theterminal in use.

umount disconnects afilesystem from the system's file tree.
vidmode could be used to set the video mode in a bootable image.

264

wher eis reports the location of binary, the source, and the manual page for the given
command.

write sends a message to the given user. That is, if that user has not disabled such
messages.

Util-linux Installation Dependencies

Util-linux depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep,
Make, Ncurses, Sed, Zlib.

Vim
For installation instructions see the Section called Installing Vim-6.2 in Chapter 6.

Official Download Location

Vim (6.2):
ftp://ftp_vim.org/pub/editors/vim/unix/

Contents of Vim

The Vim package contains a configurable text editor built to enable efficient text
editing.

Installed programs: efm_filter.pl, efm_perl.pl, ex (link to vim), less.sh, mve.awk,
pltags.pl, ref, rview (link to vim), rvim (link to vim), shtags.pl, tcltags, vi (link to vim),
view (link to vim), vim, vim132, vim2html.pl, vimdiff (link to vim), vimm,
vimspell.sh, vimtutor and xxd

Short descriptions
efm_filter.pl isafilter for creating an error file that can be read by vim.

efm_perl.pl reformats the error messages of the Perl interpreter for use with the
quickfix mode of vim.

ex starts vim in ex mode.

less.sh is ascript that starts vim with less.vim.

mve.awk processes vim errors.

pltags.pl creastes atags file for perl code, for use by vim.
ref checks the spelling of arguments.

rview is arestricted version of view: no shell commands can be started and view can't
be suspended.

265

rvim is arestricted version of vim: no shell commands can be started and vim can't be
suspended.

sntags.pl generates atag filefor perl scripts.

tcltags generates atag filefor TCL code.

vi starts vim in vi-compatible mode.

view starts vimin read-only mode.

vim isthe editor.

vim132 starts vim with the terminal in 132-column mode.

vim2html.pl converts vim documentation to HTML.

vimdiff edits two or three versions of afile with vim and show differences.
vimm enables the DEC locator input model on a remote terminal.

vimspell.sh is a script which spells afile and generates the syntax statements necessary
to highlight in vim.

vimtutor teaches you the basic keys and commands of vim.

xxd makes a hexdump of the given file. It can also do the reverse, so it can be used for
binary patching.

Vim Installation Dependencies

Vim depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make,
Ncurses, Sed.

Zlib
For installation instructions see the Section called Installing Zlib-1.1.4 in Chapter 6.

Official Download Location
Zlib (1.1.4):
http://ww._gzip.org/zlib/

Zlib Vsnprintf Patch:
http://ww . linuxfromscratch.org/patches/I1fs/5.0/z1ib-1.1.4-vsnprintf.patch

Contents of Zlib

The Zlib package contains the libz library, which is used by some programs for its
compression and uncompression functions.

Installed libraries: libz[a,s0]

266

Short description
libz* contains compression and uncompression functions used by some programs.

Zlib Installation Dependencies
Zlib depends on: Binutils, Coreutils, GCC, Glibc, Make, Sed.

267

268

Appendix B

Index of programs and library files

Thisisalist of al the programs and library files that are installed in this book, each
with alink to the package in Appendix A to which it belongs.

az2p : Perl (p251)

acinstall : Automake (p209)
aclocal : Automake (p209)
addftinfo : Groff (p233)
addr2line: Binutils (p211)
afmtodit : Groff (p233)
agetty : Util-linux (p262)
apropos : Man (p245)

ar : Binutils (p211)

arch : Util-linux (p262)

arp : Net-tools (p249)

as: Binutils (p211)

attrs : Perl (p251)

autoconf : Autoconf (p208)
autoheader : Autoconf (p208)
automdte : Autoconf (p208)
automake : Automake (p209)
autopoint : Gettext (p227)
autoreconf : Autoconf (p208)
autoscan : Autoconf (p208)
autoupdate : Autoconf (p208)
awk : Gawk (p225)
badblocks : E2fsprogs (p219)
basename : Coreutils (p214)
bash : Bash (p210)

bashbug : Bash (p210)
bigram : Findutils (p223)

269

e hison: Bison (p212)

e blkid : E2fsprogs (p219)

o Dblockdev : Util-linux (p262)
e bunzip2 : Bzip2 (p213)

e bzcat : Bzip2 (p213)

e bzcmp : Bzip2 (p213)

o bzdiff : Bzip2 (p213)

e bzegrep : Bzip2 (p213)

e bzfgrep : Bzip2 (p213)

e bzgrep : Bzip2 (p213)

e bzip2: Bzip2 (p213)

e bzip2recover : Bzip2 (p213)
e Dbzless: Bzip2 (p213)

e bzmore: Bzip2 (p213)

e ct++: GCC (p226)

o cH+filt : Binutils (p211)

o c2ph: Perl (p251)

e cal : Util-linux (p262)

e captoinfo : Ncurses (p248)
o cat : Coreutils (p214)

o catchsegv : Glibc (p229)

e cc: GCC (p226)

e ccl: GCC (p226)

e cclplus: GCC (p226)

o cfdisk : Util-linux (p262)

e chage: Shadow (p256)

o chattr : E2fsprogs (p219)

o checkfs: LFS-Bootscripts (p239)
e chfn: Shadow (p256)

e chgrp: Coreutils (p214)

o chkdupexe : Util-linux (p262)
e chmod : Coreutils (p214)

270

chown : Coreutils (p214)
chpasswd : Shadow (p256)
chroot : Coreutils (p214)

chsh : Shadow (p256)

chvt : Kbd (p237)

cksum : Coreutils (p214)
cleanfs : LFS-Bootscripts (p239)
clear : Ncurses (p248)

cmp : Diffutils (p219)

code : Findutils (p223)

col : Util-linux (p262)

colert : Util-linux (p262)
collect2 : GCC (p226)

colrm : Util-linux (p262)
column : Util-linux (p262)
comm : Coreutils (p214)
compile : Automake (p209)
compile_et : E2fsprogs (p219)
config.charset : Gettext (p227)
config.guess : Automake (p209)
config.rpath : Gettext (p227)
config.sub : Automake (p209)
cp : Coreutils (p214)

cpp : GCC (p226)

csplit : Coreutils (p214)
ctriatde : Util-linux (p262)
cut : Coreutils (p214)

cytune: Util-linux (p262)
date : Coreutils (p214)

dd : Coreutils (p214)

ddate : Util-linux (p262)
deallocvt : Kbd (p237)

271

272

debugfs : E2fsprogs (p219)
depcomp : Automake (p209)
depmod : Modutils (p247)

df : Coreutils (p214)

diff : Diffutils (p219)

diff3 : Diffutils (p219)

dir : Coreutils (p214)
dircolors : Coreutils (p214)
dirname : Coreutils (p214)
dmesg : Util-linux (p262)
dnsdomainname : Net-tools (p249)
domainname : Net-tools (p249)
dpasswd : Shadow (p256)
dprofpp : Perl (p251)

du : Coreutils (p214)
dumpe2fs : E2fsprogs (p219)
dumpkeys : Kbd (p237)
e2fsck : E2fsprogs (p219)
e2image : E2fsprogs (p219)
e2labd : E2fsprogs (p219)
echo : Coreutils (p214)

ed : Ed (p221)

efm filter.pl : Vim (p265)
efm_perl.pl : Vim (p265)
egrep : Grep (p232)
elisp-comp : Automake (p209)
elvtune: Util-linux (p262)
env : Coreutils (p214)
enc2xs : Perl (p251)

egn : Groff (p233)
e2n2graph : Groff (p233)

ex : Vim (p265)

expand : Coreutils (p214)
expiry : Shadow (p256)
expr : Coreutils (p214)
factor : Coreutils (p214)
faillog : Shadow (p256)
false: Coreutils (p214)
fdformat : Util-linux (p262)
fdisk : Util-linux (p262)
fgconsole : Kbd (p237)
farep : Grep (p232)

file: File (p223)

find : Findutils (p223)
find2perl : Perl (p251)
findfs : E2fsprogs (p219)
flex : Flex (p224)

flex++ : Flex (p224)

fmt : Coreutils (p214)

fold : Coreutils (p214)
frcode : Findutils (p223)
free: Procps (p253)

fsck : E2fsprogs (p219)
fsck.cramfs : Util-linux (p262)
fsck.ext2 : E2fsprogs (p219)
fsck.ext3 : E2fsprogs (p219)
fsck.minix : Util-linux (p262)
ftp : Inetutils (p236)
functions : LFS-Bootscripts (p239)
fuser : Psmisc (p255)

g++ : GCC (p226)

gawk : Gawk (p225)

gcc : GCC (p226)

gccbug : GCC (p226)

273

274

gcov : GCC (p226)
gencat : Glibc (p229)
genksyms : Modutils (p247)
gegn : Groff (p233)
getconf : Glibc (p229)
getent : Glibc (p229)
getkeycodes : Kbd (p237)
getopt : Util-linux (p262)
gettext : Gettext (p227)
gettextize : Gettext (p227)
getunimap : Kbd (p237)
glibcbug : Glibc (p229)
gpasswd : Shadow (p256)
gprof : Binutils (p211)
grcat : Gawk (p225)

grep : Grep (p232)

grn : Groff (p233)

groavi : Groff (p233)
groff : Groff (p233)
groffer : Groff (p233)
grog : Groff (p233)
grolbp : Groff (p233)
grolj4 : Groff (p233)
grops : Groff (p233)
grotty : Groff (p233)
groupadd : Shadow (p256)
groupdel : Shadow (p256)
groupmod : Shadow (p256)
groups : Shadow (p256)
groups : Coreutils (p214)
grpck : Shadow (p256)
grpconv : Shadow (p256)

grpunconv : Shadow (p256)
gtbl : Groff (p233)

gunzip : Gzip (p235)
gzexe: Gzip (p235)

gzip : Gzip (p235)

h2ph : Perl (p251)

h2xs : Perl (p251)

halt : LFS-Bootscripts (p239)
halt : Sysvinit (p259)

head : Coreutils (p214)
hexdump : Util-linux (p262)
hostid : Coreutils (p214)
hostname : Gettext (p227)
hostname : Net-tools (p249)
hostname : Coreutils (p214)
hpftodit : Groff (p233)
http-get : LFS-Utils (p240)
hweclock : Util-linux (p262)
iana-net : LFS-Utils (p240)
iconv : Glibc (p229)
iconvconfig : Glibc (p229)
id : Coreutils (p214)
ifconfig : Net-tools (p249)
ifdown : LFS-Bootscripts (p239)
ifnames : Autoconf (p208)
ifup : LFS-Bootscripts (p239)
igawk : Gawk (p225)
indxbib : Groff (p233)

info : Texinfo (p261)
infocmp : Ncurses (p248)
infokey : Texinfo (p261)
infotocap : Ncurses (p248)

275

276

init : Sysvinit (p259)
insmod : Modutils (p247)
insmod_ksymoops_clean : Modutils (p247)
install : Coreutils (p214)
install-info : Texinfo (p261)
install-sh : Automake (p209)
ipcrm : Util-linux (p262)
ipcs : Util-linux (p262)
isosize : Util-linux (p262)
join: Coreutils (p214)
kallsyms : Modutils (p247)
kbdrate : Kbd (p237)
kbd_mode : Kbd (p237)
kernelversion : Modutils (p247)
kill : Procps (p253)

kill : Coreutils (p214)

kill : Util-linux (p262)
killall : Psmisc (p255)
killall5 : Sysvinit (p259)
klogd : Sysklogd (p258)
ksyms : Modutils (p247)
last : Sysvinit (p259)

lastb : Sysvinit (p259)
lastlog : Shadow (p256)

Id : Binutils (p211)

Id.so : Glibc (p229)
Idconfig : Glibc (p229)

ldd : Glibc (p229)

Iddlibc4 : Glibe (p229)
less: Less (p239)

less.sh : Vim (p265)
lessecho : Less (p239)

lesskey : Less (p239)

lex : Flex (p224)

libanl : Glibc (p229)
libasprintf : Gettext (p227)
libbfd : Binutils (p211)
libblkid : E2fsprogs (p219)

libBrokenL ocale : Glibc (p229)

libbsd-compat : Glibc (p229)
libbz2 : Bzip2 (p213)

libc : Glibc (p229)
libcom_err : E2fsprogs (p219)
liberypt : Glibc (p229)
libcurses : Ncurses (p248)
libc_nonshared : Glibc (p229)
libdl : Glibc (p229)

libe2p : E2fsprogs (p219)
libext2fs : E2fsprogs (p219)
libfl : Flex (p224)

libform : Ncurses (p248)
libg : Glibc (p229)

libgee* : GCC (p226)
libgettextlib : Gettext (p227)
libgettextpo : Gettext (p227)
libgettextsrc : Gettext (p227)
libiberty : GCC (p226)
libieee : Glibc (p229)
libltdl* : Libtool (p242)
libm : Glibc (p229)

libmagic : File (p223)
libmcheck : Glibc (p229)
libmemusage : Glibc (p229)
libmenu : Ncurses (p248)

277

e libmisc : Shadow (p256)

e libncurses* : Ncurses (p248)
e libnetcfg : Perl (p251)

e libnsl : Glibc (p229)

e libnss* : Glibc (p229)

o libopcodes : Binutils (p211)
o libpane : Ncurses (p248)

e libpcprofile: Glibc (p229)
o libperl : Perl (p251)

e libproc : Procps (p253)

e libpthread : Glibc (p229)

e libresolv : Glibc (p229)

e librpcsve : Glibc (p229)

e librt: Glibc (p229)

e libSegFault : Glibc (p229)
e libshadow : Shadow (p256)
o libss: E2fsprogs (p219)

e libstdct++ : GCC (p226)

e libsupct+ : GCC (p226)

e libthread_db : Glibc (p229)
o libtool : Libtool (p242)

o libtoolize: Libtool (p242)
e libutil : Glibc (p229)

e libuuid : E2fsprogs (p219)
o liby : Bison (p212)

e libz: Zlib (p266)

e line: Util-linux (p262)

e link : Coreutils (p214)

e |kbib: Groff (p233)

e In: Coreutils (p214)

o |oadkeys: LFS-Bootscripts (p239)
o loadkeys: Kbd (p237)

278

loadunimap : Kbd (p237)
locale : Glibc (p229)
localedef : Glibc (p229)
localnet : LFS-Bootscripts (p239)
locate : Findutils (p223)
logger : Util-linux (p262)
login : Shadow (p256)
logname : Coreutils (p214)
logoutd : Shadow (p256)
logsave : E2fsprogs (p219)
look : Util-linux (p262)
lookbib : Groff (p233)
losetup : Util-linux (p262)
Is: Coreutils (p214)

Isattr : E2fsprogs (p219)
Isdev : Procinfo (p253)
Ismod : Modutils (p247)
m4 : M4 (p243)

make : Make (p244)
MAKEDEYV : MAKEDEYV (p245)
makeinfo : Texinfo (p261)
makewhatis : Man (p245)
man : Man (p245)

man2dvi : Man (p245)
manzhtml : Man (p245)
mapscrn : Kbd (p237)
mcookie : Util-linux (p262)
md5sum : Coreutils (p214)
mdate-sh : Automake (p209)
mesg : Sysvinit (p259)
missing : Automake (p209)
mkdir : Coreutils (p214)

279

280

mke2fs : E2fsprogs (p219)
mkfifo : Coreutils (p214)

mkfs : Util-linux (p262)
mkfs.bfs : Util-linux (p262)
mkfs.cramfs : Util-linux (p262)
mkfs.ext2 : E2fsprogs (p219)
mkfs.ext3 : E2fsprogs (p219)
mkfs.minix : Util-linux (p262)
mkinstalldirs : Automake (p209)
mklost+found : E2fsprogs (p219)
mknod : Coreutils (p214)
mkpasswd : Shadow (p256)
mkswap : Util-linux (p262)
mktemp : LFS-Utils (p240)
mk_cmds : E2fsprogs (p219)
mmroff : Groff (p233)

modinfo : Modutils (p247)
modprobe : Modutils (p247)
more : Util-linux (p262)

mount : Util-linux (p262)
mountfs : LFS-Bootscripts (p239)
mountproc : LFS-Bootscripts (p239)
msgattrib : Gettext (p227)
msgcat : Gettext (p227)
msgcmp : Gettext (p227)
msgcomm : Gettext (p227)
msgconv : Gettext (p227)
msgen : Gettext (p227)

msgexec : Gettext (p227)
msgfilter : Gettext (p227)
msgfmt : Gettext (p227)

msggrep : Gettext (p227)

msginit : Gettext (p227)
msgmerge : Gettext (p227)
msgunfmt : Gettext (p227)
msguniq : Gettext (p227)
mtrace : Glibc (p229)

mv : Coreutils (p214)
mve.awk : Vim (p265)
namei : Util-linux (p262)
nameif : Net-tools (p249)
negn : Groff (p233)
netstat : Net-tools (p249)

network : LFS-Bootscripts (p239)

newgrp : Shadow (p256)
newusers : Shadow (p256)
ngettext : Gettext (p227)
nice : Coreutils (p214)

nisdomai nname : Net-tools (p249)

nl : Coreutils (p214)

nm : Binutils (p211)

nohup : Coreutils (p214)
nroff : Groff (p233)

nscd : Glibe (p229)
nscd_nischeck : Glibc (p229)
objcopy : Binutils (p211)
objdump : Binutils (p211)

od : Coreutils (p214)

oldps : Procps (p253)

openvt : Kbd (p237)
parse.bash : Util-linux (p262)
parse.tcsh : Util-linux (p262)
passwd : Shadow (p256)
paste : Coreutils (p214)

281

282

patch : Patch (p250)
pathchk : Coreutils (p214)
pcprofiledump : Glibc (p229)
perl : Perl (p251)

perlbug : Perl (p251)
perlcc : Perl (p251)
perldoc : Perl (p251)
perlivp : Perl (p251)
pfbtops : Groff (p233)

pg : Util-linux (p262)
pgawk : Gawk (p225)
parep : Procps (p253)

pic : Groff (p233)
pic2graph : Groff (p233)
piconv : Perl (p251)

pidof : Sysvinit (p259)
ping : Inetutils (p236)
pinky : Coreutils (p214)
pivot_root : Util-linux (p262)
pkill : Procps (p253)
pl2pm : Perl (p251)
plipconfig : Net-tools (p249)
pltags.pl : Vim (p265)
pmap : Procps (p253)
pod2html : Perl (p251)
pod2latex : Perl (p251)
pod2man : Perl (p251)
pod2text : Perl (p251)
pod2usage : Perl (p251)
podchecker : Perl (p251)
podselect : Perl (p251)
post-grohtml : Groff (p233)

poweroff : Sysvinit (p259)
pr : Coreutils (p214)
pre-grohtml : Groff (p233)
printenv : Coreutils (p214)
printf : Coreutils (p214)
procinfo : Procinfo (p253)
project-id : Gettext (p227)
ps : Procps (p253)

psed : Perl (p251)
psfaddtable : Kbd (p237)
psfgettable : Kbd (p237)
psfstriptable : Kbd (p237)
psfxtable : Kbd (p237)
pstree : Psmisc (p255)
pstruct : Perl (p251)

ptx : Coreutils (p214)
pt_chown : Glibc (p229)
pwecat : Gawk (p225)
pwck : Shadow (p256)
pwconv : Shadow (p256)
pwd : Coreutils (p214)
pwunconv : Shadow (p256)
py-compile : Automake (p209)
ramsize : Util-linux (p262)
ranlib : Binutils (p211)
rarp : Net-tools (p249)
raw : Util-linux (p262)

rc : LFS-Bootscripts (p239)
rcp : Inetutils (p236)

rdev : Util-linux (p262)
re: Perl (p251)

readelf : Binutils (p211)

283

readlink : Coreutils (p214)
readprofile : Util-linux (p262)
reboot : LFS-Bootscripts (p239)
reboot : Sysvinit (p259)

red : Ed (p221)

ref : Vim (p265)

refer : Groff (p233)
rename : Util-linux (p262)
renice: Util-linux (p262)
reset : Ncurses (p248)
resize2fs : E2fsprogs (p219)
resizecons : Kbd (p237)

rev : Util-linux (p262)
rlogin : Inetutils (p236)

rm : Coreutils (p214)

rmdir : Coreutils (p214)
rmmod : Modutils (p247)
rmt : Tar (p260)

rootflags : Util-linux (p262)
route : Net-tools (p249)
rpcgen : Glibc (p229)
rpcinfo : Glibc (p229)

rsh : Inetutils (p236)
runlevel : Sysvinit (p259)
rview : Vim (p265)

rvim : Vim (p265)

s2p : Perl (p251)

script : Util-linux (p262)
sdiff @ Diffutils (p219)

sed : Sed (p255)
sendsignals : LFS-Bootscripts (p239)
seq : Coreutils (p214)

setclock : LFS-Bootscripts (p239)
setfdprm : Util-linux (p262)
setfont : Kbd (p237)
setkeycodes : Kbd (p237)
setleds : Kbd (p237)
setlogeons : Kbd (p237)
setmetamode : Kbd (p237)
setsid : Util-linux (p262)
setterm : Util-linux (p262)
setvesablank : Kbd (p237)
sfdisk : Util-linux (p262)
sg : Shadow (p256)

sh : Bash (p210)

shalsum : Coreutils (p214)
showconsolefont : Kbd (p237)
snowkey : Kbd (p237)
shred : Coreutils (p214)
shtags.pl : Vim (p265)
shutdown : Sysvinit (p259)
size: Binutils (p211)

skill : Procps (p253)
slattach : Net-tools (p249)
sleep : Coreutils (p214)
dn: Glibc (p229)

snice : Procps (p253)
socklist : Procinfo (p253)
soelim : Groff (p233)

sort : Coreutils (p214)
splain : Perl (p251)

split : Coreutils (p214)
sprof : Glibc (p229)

stat : Coreutils (p214)

285

286

strings : Binutils (p211)
strip : Binutils (p211)

stty : Coreutils (p214)

su : Coreutils (p214)

sulogin : Sysvinit (p259)

sum : Coreutils (p214)

swap : LFS-Bootscripts (p239)
swapoff : Util-linux (p262)
swapon : Util-linux (p262)
sync : Coreutils (p214)

sysctl : Procps (p253)
sysklogd : LFS-Bootscripts (p239)
syslogd : Sysklogd (p258)
tac : Coreutils (p214)

tack : Ncurses (p248)

tail : Coreutils (p214)

talk : Inetutils (p236)

tar : Tar (p260)

tbl : Groff (p233)

tcltags : Vim (p265)
team-address : Gettext (p227)
tee : Coreutils (p214)

telinit : Sysvinit (p259)

telnet : Inetutils (p236)
tempfile : LFS-Utils (p240)
template : LFS-Bootscripts (p239)
test : Coreutils (p214)
test.bash : Util-linux (p262)
test.tcsh : Util-linux (p262)
texi2dvi : Texinfo (p261)
texindex : Texinfo (p261)
tfmtodit : Groff (p233)

tftp : Inetutils (p236)

tic : Ncurses (p248)

tload : Procps (p253)

toe : Ncurses (p248)

top : Procps (p253)

touch : Coreutils (p214)
tput : Ncurses (p248)

tr : Coreutils (p214)
trigger : Gettext (p227)
troff : Groff (p233)

true: Coreutils (p214)

tset : Ncurses (p248)

tsort : Coreutils (p214)

tty : Coreutils (p214)
tune2fs : E2fsprogs (p219)
tunelp : Util-linux (p262)
tzselect : Glibc (p229)

ul : Util-linux (p262)
umount : Util-linux (p262)
uname : Coreutils (p214)
uncompress : Gzip (p235)
unexpand : Coreutils (p214)
unicode_start : Kbd (p237)
unicode_stop : Kbd (p237)
uniq : Coreutils (p214)
unlink : Coreutils (p214)
updatedb : Findutils (p223)
uptime: Coreutils (p214)
uptime : Procps (p253)
urlget : Gettext (p227)
user-email : Gettext (p227)
useradd : Shadow (p256)

287

288

userdel : Shadow (p256)
usermod : Shadow (p256)
users : Coreutils (p214)
utmpdump : Sysvinit (p259)
uuidgen : E2fsprogs (p219)
vdir : Coreutils (p214)

vi : Vim (p265)

vidmode : Util-linux (p262)
view : Vim (p265)

vigr : Shadow (p256)
vim: Vim (p265)

vim132 : Vim (p265)
vimz2html.pl : Vim (p265)
vimdiff : Vim (p265)
vimm : Vim (p265)
vimspell.sh: Vim (p265)
vimtutor : Vim (p265)
vipw : Shadow (p256)
vmstat : Procps (p253)

w : Procps (p253)

wall : Sysvinit (p259)
watch : Procps (p253)

wc : Coreutils (p214)
whatis : Man (p245)
whereis : Util-linux (p262)
who : Coreutils (p214)
whoami : Coreutils (p214)
write: Util-linux (p262)
xargs : Findutils (p223)
xgettext : Gettext (p227)
xsubpp : Perl (p251)
xtrace : Glibc (p229)

xxd : Vim (p265)
yacc : Bison (p212)
yes : Coreutils (p214)

ylwrap : Automake (p209)
ypdomainname : Net-tools (p249)

zcat : Gzip (p235)
zcmp @ Gzip (p235)
zdiff : Gzip (p235)
zdump : Glibc (p229)
zegrep : Gzip (p235)
zfgrep : Gzip (p235)
zforce : Gzip (p235)
zgrep : Gzip (p235)
zic : Glibc (p229)
zless : Gzip (p235)
zmore : Gzip (p235)
znew : Gzip (p235)
zsoelim : Groff (p233)

289

