Linux From Scratch

Version 11.2

Published September 1st, 2022

Created by Gerard Beekmans

Managing Editor: Bruce Dubbs

Copyright © 1999-2022, Gerard Beekmans

All rights reserved.

This book is licensed under a Creative Commons License.

Computer instructions may be extracted from the book under the MIT License.

Linux® is a registered trademark of Linus Torvalds.


Table of Contents

Preface

Foreword

My journey to learn and better understand Linux began back in 1998. I had just installed my first Linux distribution and had quickly become intrigued with the whole concept and philosophy behind Linux.

There are always many ways to accomplish a single task. The same can be said about Linux distributions. A great many have existed over the years. Some still exist, some have morphed into something else, yet others have been relegated to our memories. They all do things differently to suit the needs of their target audience. Because so many different ways to accomplish the same end goal exist, I began to realize I no longer had to be limited by any one implementation. Prior to discovering Linux, we simply put up with issues in other Operating Systems as you had no choice. It was what it was, whether you liked it or not. With Linux, the concept of choice began to emerge. If you didn't like something, you were free, even encouraged, to change it.

I tried a number of distributions and could not decide on any one. They were great systems in their own right. It wasn't a matter of right and wrong anymore. It had become a matter of personal taste. With all that choice available, it became apparent that there would not be a single system that would be perfect for me. So I set out to create my own Linux system that would fully conform to my personal preferences.

To truly make it my own system, I resolved to compile everything from source code instead of using pre-compiled binary packages. This perfect Linux system would have the strengths of various systems without their perceived weaknesses. At first, the idea was rather daunting. I remained committed to the idea that such a system could be built.

After sorting through issues such as circular dependencies and compile-time errors, I finally built a custom-built Linux system. It was fully operational and perfectly usable like any of the other Linux systems out there at the time. But it was my own creation. It was very satisfying to have put together such a system myself. The only thing better would have been to create each piece of software myself. This was the next best thing.

As I shared my goals and experiences with other members of the Linux community, it became apparent that there was a sustained interest in these ideas. It quickly became plain that such custom-built Linux systems serve not only to meet user specific requirements, but also serve as an ideal learning opportunity for programmers and system administrators to enhance their (existing) Linux skills. Out of this broadened interest, the Linux From Scratch Project was born.

This Linux From Scratch book is the central core around that project. It provides the background and instructions necessary for you to design and build your own system. While this book provides a template that will result in a correctly working system, you are free to alter the instructions to suit yourself, which is, in part, an important part of this project. You remain in control; we just lend a helping hand to get you started on your own journey.

I sincerely hope you will have a great time working on your own Linux From Scratch system and enjoy the numerous benefits of having a system that is truly your own.

--
Gerard Beekmans
gerard AT linuxfromscratch D0T org

Audience

There are many reasons why you would want to read this book. One of the questions many people raise is, why go through all the hassle of manually building a Linux system from scratch when you can just download and install an existing one?

One important reason for this project's existence is to help you learn how a Linux system works from the inside out. Building an LFS system helps demonstrate what makes Linux tick, and how things work together and depend on each other. One of the best things that this learning experience can provide is the ability to customize a Linux system to suit your own unique needs.

Another key benefit of LFS is that it allows you to have more control over the system without relying on someone else's Linux implementation. With LFS, you are in the driver's seat and dictate every aspect of the system.

LFS allows you to create very compact Linux systems. When installing regular distributions, you are often forced to install a great many programs which are probably never used or understood. These programs waste resources. You may argue that with today's hard drive and CPUs, such resources are no longer a consideration. Sometimes, however, you are still constrained by size considerations if nothing else. Think about bootable CDs, USB sticks, and embedded systems. Those are areas where LFS can be beneficial.

Another advantage of a custom built Linux system is security. By compiling the entire system from source code, you are empowered to audit everything and apply all the security patches desired. It is no longer necessary to wait for somebody else to compile binary packages that fix a security hole. Unless you examine the patch and implement it yourself, you have no guarantee that the new binary package was built correctly and adequately fixes the problem.

The goal of Linux From Scratch is to build a complete and usable foundation-level system. If you do not wish to build your own Linux system from scratch, you may nevertheless benefit from the information in this book.

There are too many other good reasons to build your own LFS system to list them all here. In the end, education is by far the most powerful of reasons. As you continue in your LFS experience, you will discover the power that information and knowledge truly bring.

LFS Target Architectures

The primary target architectures of LFS are the AMD/Intel x86 (32-bit) and x86_64 (64-bit) CPUs. On the other hand, the instructions in this book are also known to work, with some modifications, with the Power PC and ARM CPUs. To build a system that utilizes one of these CPUs, the main prerequisite, in addition to those on the next page, is an existing Linux system such as an earlier LFS installation, Ubuntu, Red Hat/Fedora, SuSE, or other distribution that targets the architecture that you have. Also note that a 32-bit distribution can be installed and used as a host system on a 64-bit AMD/Intel computer.

For building LFS, the gain of building on a 64-bit system compared to a 32-bit system is minimal. For example, in a test build of LFS-9.1 on a Core i7-4790 CPU based system, using 4 cores, the following statistics were measured:

Architecture Build Time     Build Size
32-bit       239.9 minutes  3.6 GB
64-bit       233.2 minutes  4.4 GB

As you can see, on the same hardware, the 64-bit build is only 3% faster and is 22% larger than the 32-bit build. If you plan to use LFS as a LAMP server, or a firewall, a 32-bit CPU may be largely sufficient. On the other hand, several packages in BLFS now need more than 4GB of RAM to be built and/or to run, so that if you plan to use LFS as a desktop, the LFS authors recommend building on a 64-bit system.

The default 64-bit build that results from LFS is considered a pure 64-bit system. That is, it supports 64-bit executables only. Building a multi-lib system requires compiling many applications twice, once for a 32-bit system and once for a 64-bit system. This is not directly supported in LFS because it would interfere with the educational objective of providing the instructions needed for a straightforward base Linux system. Some LFS/BLFS editors maintain a fork of LFS for multilib, which is accessible at https://www.linuxfromscratch.org/~thomas/multilib/index.html. But it is an advanced topic.

Prerequisites

Building an LFS system is not a simple task. It requires a certain level of existing knowledge of Unix system administration in order to resolve problems and correctly execute the commands listed. In particular, as an absolute minimum, you should already have the ability to use the command line (shell) to copy or move files and directories, list directory and file contents, and change the current directory. It is also expected that you have a reasonable knowledge of using and installing Linux software.

Because the LFS book assumes at least this basic level of skill, the various LFS support forums are unlikely to be able to provide you with much assistance in these areas. You will find that your questions regarding such basic knowledge will likely go unanswered or you will simply be referred to the LFS essential pre-reading list.

Before building an LFS system, we recommend reading the following:

LFS and Standards

The structure of LFS follows Linux standards as closely as possible. The primary standards are:

  • POSIX.1-2008.

  • Filesystem Hierarchy Standard (FHS) Version 3.0

  • Linux Standard Base (LSB) Version 5.0 (2015)

    The LSB has four separate standards: Core, Desktop, Runtime Languages, and Imaging. In addition to generic requirements there are also architecture specific requirements. There are also two areas for trial use: Gtk3 and Graphics. LFS attempts to conform to the architectures discussed in the previous section.

    Note

    Many people do not agree with the requirements of the LSB. The main purpose of defining it is to ensure that proprietary software will be able to be installed and run properly on a compliant system. Since LFS is source based, the user has complete control over what packages are desired and many choose not to install some packages that are specified by the LSB.

Creating a complete LFS system capable of passing the LSB certifications tests is possible, but not without many additional packages that are beyond the scope of LFS. These additional packages have installation instructions in BLFS.

Packages supplied by LFS needed to satisfy the LSB Requirements

LSB Core:

Bash, Bc, Binutils, Coreutils, Diffutils, File, Findutils, Gawk, Grep, Gzip, M4, Man-DB, Ncurses, Procps, Psmisc, Sed, Shadow, Tar, Util-linux, Zlib

LSB Desktop:

None

LSB Runtime Languages:

Perl, Python

LSB Imaging:

None

LSB Gtk3 and LSB Graphics (Trial Use):

None

Packages supplied by BLFS needed to satisfy the LSB Requirements

LSB Core:

At, Batch (a part of At), Cpio, Ed, Fcrontab, LSB-Tools, NSPR, NSS, PAM, Pax, Sendmail (or Postfix or Exim), time

LSB Desktop:

Alsa, ATK, Cairo, Desktop-file-utils, Freetype, Fontconfig, Gdk-pixbuf, Glib2, GTK+2, Icon-naming-utils, Libjpeg-turbo, Libpng, Libtiff, Libxml2, MesaLib, Pango, Xdg-utils, Xorg

LSB Runtime Languages:

Libxml2, Libxslt

LSB Imaging:

CUPS, Cups-filters, Ghostscript, SANE

LSB Gtk3 and LSB Graphics (Trial Use):

GTK+3

Packages not supplied by LFS or BLFS needed to satisfy the LSB Requirements

LSB Core:

None

LSB Desktop:

Qt4 (but Qt5 is provided)

LSB Runtime Languages:

None

LSB Imaging:

None

LSB Gtk3 and LSB Graphics (Trial Use):

None

Rationale for Packages in the Book

As stated earlier, the goal of LFS is to build a complete and usable foundation-level system. This includes all packages needed to replicate itself while providing a relatively minimal base from which to customize a more complete system based on the choices of the user. This does not mean that LFS is the smallest system possible. Several important packages are included that are not strictly required. The lists below document the rationale for each package in the book.

  • Acl

    This package contains utilities to administer Access Control Lists, which are used to define more fine-grained discretionary access rights for files and directories.

  • Attr

    This package contains programs for administering extended attributes on filesystem objects.

  • Autoconf

    This package contains programs for producing shell scripts that can automatically configure source code from a developer's template. It is often needed to rebuild a package after updates to the build procedures.

  • Automake

    This package contains programs for generating Make files from a template. It is often needed to rebuild a package after updates to the build procedures.

  • Bash

    This package satisfies an LSB core requirement to provide a Bourne Shell interface to the system. It was chosen over other shell packages because of its common usage and extensive capabilities beyond basic shell functions.

  • Bc

    This package provides an arbitrary precision numeric processing language. It satisfies a requirement needed when building the Linux kernel.

  • Binutils

    This package contains a linker, an assembler, and other tools for handling object files. The programs in this package are needed to compile most of the packages in an LFS system and beyond.

  • Bison

    This package contains the GNU version of yacc (Yet Another Compiler Compiler) needed to build several other LFS programs.

  • Bzip2

    This package contains programs for compressing and decompressing files. It is required to decompress many LFS packages.

  • Check

    This package contains a test harness for other programs.

  • Coreutils

    This package contains a number of essential programs for viewing and manipulating files and directories. These programs are needed for command line file management, and are necessary for the installation procedures of every package in LFS.

  • DejaGNU

    This package contains a framework for testing other programs.

  • Diffutils

    This package contains programs that show the differences between files or directories. These programs can be used to create patches, and are also used in many packages' build procedures.

  • E2fsprogs

    This package contains the utilities for handling the ext2, ext3 and ext4 file systems. These are the most common and thoroughly tested file systems that Linux supports.

  • Eudev

    This package is a device manager. It dynamically controls the ownership, permissions, names, and symbolic links of devices in the /dev directory as devices are added or removed from the system.

  • Expat

    This package contains a relatively small XML parsing library. It is required by the XML::Parser Perl module.

  • Expect

    This package contains a program for carrying out scripted dialogues with other interactive programs. It is commonly used for testing other packages.

  • File

    This package contains a utility for determining the type of a given file or files. A few packages need it in their build scripts.

  • Findutils

    This package contains programs to find files in a file system. It is used in many packages' build scripts.

  • Flex

    This package contains a utility for generating programs that recognize patterns in text. It is the GNU version of the lex (lexical analyzer) program. It is required to build several LFS packages.

  • Gawk

    This package contains programs for manipulating text files. It is the GNU version of awk (Aho-Weinberg-Kernighan). It is used in many other packages' build scripts.

  • GCC

    This package is the Gnu Compiler Collection. It contains the C and C++ compilers as well as several others not built by LFS.

  • GDBM

    This package contains the GNU Database Manager library. It is used by one other LFS package, Man-DB.

  • Gettext

    This package contains utilities and libraries for internationalization and localization of numerous packages.

  • Glibc

    This package contains the main C library. Linux programs will not run without it.

  • GMP

    This package contains math libraries that provide useful functions for arbitrary precision arithmetic. It is required to build GCC.

  • Gperf

    This package contains a program that generates a perfect hash function from a key set. It is required for Eudev.

  • Grep

    This package contains programs for searching through files. These programs are used by most packages' build scripts.

  • Groff

    This package contains programs for processing and formatting text. One important function of these programs is to format man pages.

  • GRUB

    This package is the Grand Unified Boot Loader. It is one of several boot loaders available, but is the most flexible.

  • Gzip

    This package contains programs for compressing and decompressing files. It is needed to decompress many packages in LFS and beyond.

  • Iana-etc

    This package provides data for network services and protocols. It is needed to enable proper networking capabilities.

  • Inetutils

    This package contains programs for basic network administration.

  • Intltool

    This package contains tools for extracting translatable strings from source files.

  • IProute2

    This package contains programs for basic and advanced IPv4 and IPv6 networking. It was chosen over the other common network tools package (net-tools) for its IPv6 capabilities.

  • Kbd

    This package contains key-table files, keyboard utilities for non-US keyboards, and a number of console fonts.

  • Kmod

    This package contains programs needed to administer Linux kernel modules.

  • Less

    This package contains a very nice text file viewer that allows scrolling up or down when viewing a file. It is also used by Man-DB for viewing manpages.

  • Libcap

    This package implements the user-space interfaces to the POSIX 1003.1e capabilities available in Linux kernels.

  • Libelf

    The elfutils project provides libraries and tools for ELF files and DWARF data. Most utilities in this package are available in other packages, but the library is needed to build the Linux kernel using the default (and most efficient) configuration.

  • Libffi

    This package implements a portable, high level programming interface to various calling conventions. Some programs may not know at the time of compilation what arguments are to be passed to a function. For instance, an interpreter may be told at run-time about the number and types of arguments used to call a given function. Libffi can be used in such programs to provide a bridge from the interpreter program to compiled code.

  • Libpipeline

    The Libpipeline package contains a library for manipulating pipelines of subprocesses in a flexible and convenient way. It is required by the Man-DB package.

  • Libtool

    This package contains the GNU generic library support script. It wraps the complexity of using shared libraries in a consistent, portable interface. It is needed by the test suites in other LFS packages.

  • Linux Kernel

    This package is the Operating System. It is the Linux in the GNU/Linux environment.

  • M4

    This package contains a general text macro processor useful as a build tool for other programs.

  • Make

    This package contains a program for directing the building of packages. It is required by almost every package in LFS.

  • Man-DB

    This package contains programs for finding and viewing man pages. It was chosen instead of the man package due to superior internationalization capabilities. It supplies the man program.

  • Man-pages

    This package contains the actual contents of the basic Linux man pages.

  • Meson

    This package provides a software tool for automating the building of software. The main goal for Meson is to minimize the amount of time that software developers need to spend configuring their build system. It's required to build Systemd, as well as many BLFS packages.

  • MPC

    This package contains functions for the arithmetic of complex numbers. It is required by GCC.

  • MPFR

    This package contains functions for multiple precision arithmetic. It is required by GCC.

  • Ninja

    This package contains a small build system with a focus on speed. It is designed to have its input files generated by a higher-level build system, and to run builds as fast as possible. This package is required by Meson.

  • Ncurses

    This package contains libraries for terminal-independent handling of character screens. It is often used to provide cursor control for a menuing system. It is needed by a number of packages in LFS.

  • Openssl

    This package provides management tools and libraries relating to cryptography. These are useful for providing cryptographic functions to other packages, including the Linux kernel.

  • Patch

    This package contains a program for modifying or creating files by applying a patch file typically created by the diff program. It is needed by the build procedure for several LFS packages.

  • Perl

    This package is an interpreter for the runtime language PERL. It is needed for the installation and test suites of several LFS packages.

  • Pkg-config

    This package provides a program that returns meta-data about an installed library or package.

  • Procps-NG

    This package contains programs for monitoring processes. These programs are useful for system administration, and are also used by the LFS Bootscripts.

  • Psmisc

    This package contains programs for displaying information about running processes. These programs are useful for system administration.

  • Python 3

    This package provides an interpreted language that has a design philosophy that emphasizes code readability.

  • Readline

    This package is a set of libraries that offers command-line editing and history capabilities. It is used by Bash.

  • Sed

    This package allows editing of text without opening it in a text editor. It is also needed by most LFS packages' configure scripts.

  • Shadow

    This package contains programs for handling passwords in a secure way.

  • Sysklogd

    This package contains programs for logging system messages, such as those given by the kernel or daemon processes when unusual events occur.

  • Sysvinit

    This package provides the init program, which is the parent of all other processes on the Linux system.

  • Tar

    This package provides archiving and extraction capabilities of virtually all packages used in LFS.

  • Tcl

    This package contains the Tool Command Language used in many test suites in LFS packages.

  • Texinfo

    This package contains programs for reading, writing, and converting info pages. It is used in the installation procedures of many LFS packages.

  • Util-linux

    This package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.

  • Wheel

    This package contains a Python module that is the reference implementation of the Python wheel packaging standard.

  • Vim

    This package contains an editor. It was chosen because of its compatibility with the classic vi editor and its huge number of powerful capabilities. An editor is a very personal choice for many users and any other editor could be substituted if desired.

  • XML::Parser

    This package is a Perl module that interfaces with Expat.

  • XZ Utils

    This package contains programs for compressing and decompressing files. It provides the highest compression generally available and is useful for decompressing packages in XZ or LZMA format.

  • Zlib

    This package contains compression and decompression routines used by some programs.

  • Zstd

    This package contains compression and decompression routines used by some programs. It provides high compression ratios and a very wide range of compression / speed trade-offs.

Typography

To make things easier to follow, there are a few typographical conventions used throughout this book. This section contains some examples of the typographical format found throughout Linux From Scratch.

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is also used in the explanation sections to identify which of the commands is being referenced.

In some cases, a logical line is extended to two or more physical lines with a backslash at the end of the line.

CC="gcc -B/usr/bin/" ../binutils-2.18/configure \
  --prefix=/tools --disable-nls --disable-werror

Note that the backslash must be followed by an immediate return. Other whitespace characters like spaces or tab characters will create incorrect results.

install-info: unknown option '--dir-file=/mnt/lfs/usr/info/dir'

This form of text (fixed-width text) shows screen output, usually as the result of commands issued. This format is also used to show filenames, such as /etc/ld.so.conf.

Note

Please configure your browser to display fixed-width text with a good monospaced font, with which you can distinguish the glyphs of Il1 or O0 clearly.

Emphasis

This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or items.

https://www.linuxfromscratch.org/

This format is used for hyperlinks both within the LFS community and to external pages. It includes HOWTOs, download locations, and websites.

cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF

This format is used when creating configuration files. The first command tells the system to create the file $LFS/etc/group from whatever is typed on the following lines until the sequence End Of File (EOF) is encountered. Therefore, this entire section is generally typed as seen.

<REPLACED TEXT>

This format is used to encapsulate text that is not to be typed as seen or for copy-and-paste operations.

[OPTIONAL TEXT]

This format is used to encapsulate text that is optional.

passwd(5)

This format is used to refer to a specific manual (man) page. The number inside parentheses indicates a specific section inside the manuals. For example, passwd has two man pages. Per LFS installation instructions, those two man pages will be located at /usr/share/man/man1/passwd.1 and /usr/share/man/man5/passwd.5. When the book uses passwd(5) it is specifically referring to /usr/share/man/man5/passwd.5. man passwd will print the first man page it finds that matches passwd, which will be /usr/share/man/man1/passwd.1. For this example, you will need to run man 5 passwd in order to read the page being specified. Note that most man pages do not have duplicate page names in different sections. Therefore, man <program name> is generally sufficient.

Structure

This book is divided into the following parts.

Part I - Introduction

Part I explains a few important notes on how to proceed with the LFS installation. This section also provides meta-information about the book.

Part II - Preparing for the Build

Part II describes how to prepare for the building process—making a partition, downloading the packages, and compiling temporary tools.

Part III - Building the LFS Cross Toolchain and Temporary Tools

Part III provides instructions for building the tools needed for constructing the final LFS system.

Part IV - Building the LFS System

Part IV guides the reader through the building of the LFS system—compiling and installing all the packages one by one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on which other software can be built to expand the system as desired. At the end of this book, there is an easy to use reference listing all of the programs, libraries, and important files that have been installed.

Part V - Appendices

Part V provides information about the book itself including acronyms and terms, acknowledgments, package dependencies, a listing of LFS boot scripts, licenses for the distribution of the book, and a comprehensive index of packages, programs, libraries, and scripts.

Errata and Security Advisories

The software used to create an LFS system is constantly being updated and enhanced. Security warnings and bug fixes may become available after the LFS book has been released. To check whether the package versions or instructions in this release of LFS need any modifications to accommodate security vulnerabilities or other bug fixes, please visit https://www.linuxfromscratch.org/lfs/errata/11.2/ before proceeding with your build. You should note any changes shown and apply them to the relevant section of the book as you progress with building the LFS system.

In addition, the Linux From Scratch editors maintain a list of security vulnerabilities discovered after a book was released. To check whether there are any active security vulnerabilities, please visit https://www.linuxfromscratch.org/lfs/advisories/ prior to proceeding with your build. You should note any advisories and perform the steps to fix any security vulnerabilities as you progress with building the LFS system.

Part I. Introduction

Chapter 1. Introduction

1.1. How to Build an LFS System

The LFS system will be built by using an already installed Linux distribution (such as Debian, OpenMandriva, Fedora, or openSUSE). This existing Linux system (the host) will be used as a starting point to provide necessary programs, including a compiler, linker, and shell, to build the new system. Select the development option during the distribution installation to be able to access these tools.

As an alternative to installing a separate distribution onto your machine, you may wish to use a LiveCD from a commercial distribution.

Chapter 2 of this book describes how to create a new Linux native partition and file system. This is the place where the new LFS system will be compiled and installed. Chapter 3 explains which packages and patches need to be downloaded to build an LFS system and how to store them on the new file system. Chapter 4 discusses the setup of an appropriate working environment. Please read Chapter 4 carefully as it explains several important issues you need be aware of before beginning to work your way through Chapter 5 and beyond.

Chapter 5, explains the installation of the initial tool chain, (binutils, gcc, and glibc) using cross compilation techniques to isolate the new tools from the host system.

Chapter 6 shows you how to cross-compile basic utilities using the just built cross-toolchain.

Chapter 7 then enters a "chroot" environment and uses the previously built tools to build the additional tools needed to build and test the final system.

This effort to isolate the new system from the host distribution may seem excessive. A full technical explanation as to why this is done is provided in Toolchain Technical Notes.

In Chapter 8, The full LFS system is built. Another advantage provided by the chroot environment is that it allows you to continue using the host system while LFS is being built. While waiting for package compilations to complete, you can continue using your computer as normal.

To finish the installation, the basic system configuration is set up in Chapter 9, and the kernel and boot loader are set up in Chapter 10. Chapter 11 contains information on continuing the LFS experience beyond this book. After the steps in this book have been implemented, the computer will be ready to reboot into the new LFS system.

This is the process in a nutshell. Detailed information on each step is discussed in the following chapters and package descriptions. Items that may seem complicated will be clarified, and everything will fall into place as you embark on the LFS adventure.

1.2. What's new since the last release

Below is a list of package updates made since the previous release of the book.

Upgraded to:

  • Bc 6.0.1

  • Binutils-2.39

  • Coreutils-9.1

  • E2fsprogs-1.46.5

  • Expat-2.4.8

  • File-5.42

  • GCC-12.2.0

  • Glibc-2.36

  • Gzip-1.12

  • IANA-Etc-20220812

  • Inetutils-2.3

  • IPRoute2-5.19.0

  • Kbd-2.5.1

  • Kmod-30

  • Libcap-2.65

  • Libelf-0.187 (from elfutils)

  • Libpipeline-1.5.6

  • Libtool-2.4.7

  • Linux-5.19.2

  • Man-DB-2.10.2

  • Meson-0.63.1

  • Ninja-1.11.0

  • Openssl-3.0.5

  • Perl-5.36.0

  • Procps-ng-4.0.0

  • Psmisc-23.5

  • Python-3.10.6

  • Shadow-4.12.2

  • SysVinit-3.04

  • Tzdata-2022c

  • Util-Linux-2.38.1

  • Vim-9.0.0228

  • XZ-Utils-5.2.6

  • Zlib-1.2.12

Added:

  • Wheel-0.37.1

  • zstd-1.5.2-upstream_fixes-1.patch

Removed:

  • perl-5.34.0-upstream_fixes-1.patch

  • systemd-250-kernel_5.17_fixes-1.patch

  • systemd-250-upstream_fixes-1.patch

1.3. Changelog

This is version 11.2 of the Linux From Scratch book, dated September 1st, 2022. If this book is more than six months old, a newer and better version is probably already available. To find out, please check one of the mirrors via https://www.linuxfromscratch.org/mirrors.html.

Below is a list of changes made since the previous release of the book.

Changelog Entries:

  • 2022-09-01

    • [bdubbs] - LFS-11.2 released.

  • 2022-08-20

    • [bdubbs] - Update to vim-9.0.0228. Addresses #4500.

    • [bdubbs] - Update to iana-etc-20220812. Addresses #5006.

    • [bdubbs] - Update to gcc-12.2.0. Fixes #5098.

    • [bdubbs] - Update to linux-5.19.2 (security fixes). Fixes #5097.

    • [bdubbs] - Update to tzdata-2022c. Fixes #5096.

    • [bdubbs] - Update to shadow-4.12.2 (security fix). Fixes #5095.

    • [bdubbs] - Update to meson-0.63.1. Fixes #5094.

    • [bdubbs] - Update to xz-5.2.6. Fixes #5093.

  • 2022-08-18

    • [xry111] - Remove libtool archive (.la) files in Chapter 5 and 6 because those files are harmful for cross compilation.

  • 2022-08-11

    • [bdubbs] - Update to vim-9.0.0192. Addresses #4500.

    • [bdubbs] - Update to iana-etc-20220803. Addresses #5006.

    • [bdubbs] - Update to tzdata-2022b. Fixes #5092.

    • [bdubbs] - Update to iproute2-5.19.0. Fixes #5086.

    • [bdubbs] - Update to linux-5.19.1. Fixes #5085.

    • [bdubbs] - Update to bc-6.0.1. Fixes #5090.

  • 2022-08-06

    • [bdubbs] - Update to binutils-2.39. Fixes #5089.

    • [bdubbs] - Update to util-linux-2.38.1. Fixes #5088.

    • [bdubbs] - Update to Python3-3.10.6. Fixes #5087.

    • [bdubbs] - Update to glibc-2.36. Fixes #5084.

  • 2022-07-24

    • [bdubbs] - Update to linux-5.18.14. (Security fixes for machines affected by the RETBleed vulnerability). Fixes #5082.

    • [bdubbs] - Update to libcap-2.65. Fixes #5083.

  • 2022-07-15

    • [bdubbs] - Update to meson-0.63.0. Fixes #5079.

    • [bdubbs] - Update to kmod-30. Fixes #5077.

    • [bdubbs] - Update to inetutils-2.3. Fixes #5081.

    • [bdubbs] - Update to linux-5.18.11. Fixes #5078.

    • [bdubbs] - Update to OpenSSL-3.0.5. Fixes #5080.

  • 2022-07-01

    • [bdubbs] - Update to vim-9.0.0006. Addresses #4500.

    • [bdubbs] - Update to iana-etc-20220610. Addresses #5006.

    • [bdubbs] - Update to OpenSSL-3.0.4. Fixes #5076.

    • [bdubbs] - Update to kbd-2.5.1. Fixes #5075.

    • [bdubbs] - Update to linux-5.18.8. Fixes #5074.

    • [bdubbs] - Update to bc-5.3.3. Fixes #5073.

  • 2022-06-29

    • [pierre] - Generate shared C++ bindings for ncurses, instead of generating and then removing the static ones.

  • 2022-06-14

    • [bdubbs] - Update to python3-3.10.5. Fixes #5070.

    • [bdubbs] - Update to meson-0.62.2. Fixes #5068.

    • [bdubbs] - Update to kbd-2.5.0. Fixes #5067.

    • [bdubbs] - Update to file-5.42. Fixes #5072.

    • [bdubbs] - Update to linux-5.18.3. Fixes #5069.

    • [bdubbs] - Update to bc-5.3.1. Fixes #5071.

  • 2022-05-29

    • [bdubbs] - Update to iana-etc-20220524. Addresses #5006.

    • [bdubbs] - Update to iproute2-5.18.0. Fixes #5065.

    • [bdubbs] - Update to linux-5.18.1. Fixes #5061.

    • [bdubbs] - Update to perl-5.36.0. Fixes #5066.

  • 2022-05-29

    • [xry111] - Update to vim-8.2.5014 (security fixes). Addresses #4500.

    • [xry111] - Update to ninja-1.11.0. Fixes #5062.

    • [xry111] - Update to systemd-251. Fixes #5064.

  • 2022-05-16

    • [bdubbs] - Update to linux-5.17.7. Fixes #5059.

    • [bdubbs] - Update to psmisc-23.5. Fixes #5060.

  • 2022-05-01

    • [bdubbs] - Update to openssl-3.0.3. Fixes #5057.

  • 2022-05-01

    • [bdubbs] - Change nobody/nogroup uid/gid to 65534.

    • [bdubbs] - Update to meson-0.62.1. Fixes #5052.

    • [bdubbs] - Update to libpipeline-1.5.6. Fixes #5053.

    • [bdubbs] - Update to elfutils-0.187. Fixes #5054.

    • [bdubbs] - Update to vim-8.2.4814. Addresses #4500.

    • [bdubbs] - Update to sysvinit-3.03. Fixes #5046.

    • [bdubbs] - Update to linux-5.17.5. Fixes #5050.

    • [bdubbs] - Update to gcc-11.3.0. Fixes #5051.

    • [bdubbs] - Update to coreutils-9.1. Fixes #5048.

    • [bdubbs] - Update to bc-5.2.4. Fixes #5049.

  • 2022-04-15

    • [bdubbs] - Add wheel-0.37.1 (Python module).

  • 2022-04-15

    • [ken] - Patch Xz for a security fix. Fixes #5047.

    • [bdubbs] - Update to libcap-2.64. Fixes #5044.

    • [bdubbs] - Update to linux-5.17.3. Fixes #5043.

    • [bdubbs] - Update to gzip-1.12. Fixes #5042.

  • 2022-03-31

    • [bdubbs] - Update to sysvinit-3.02. Fixes #5041.

    • [bdubbs] - Update to zlib-1.2.12 (Security Update). Fixes #5040.

    • [bdubbs] - Update to expat-2.4.8. Fixes #5039.

    • [bdubbs] - Update to Python-3.10.4. Fixes #5037.

    • [bdubbs] - Update to procps-ng-4.0.0. Fixes #5036.

    • [bdubbs] - Update to iproute2-5.17.0. Fixes #5035.

    • [bdubbs] - Update to meson-0.62.0. Fixes #5034.

    • [bdubbs] - Update to linux-5.17.1 (Security Update). Fixes #5033.

    • [bdubbs] - Update to util-linux-2.38. Fixes #4997.

  • 2022-03-25

    • [pierre] - Update bootscripts to 20220324. Fixes #5027.

  • 2022-03-20

    • [xry111] - Update to Python-3.10.3. Fixes #5028.

    • [xry111] - Update to libtool-2.4.7. Fixes #5029.

    • [xry111] - Update to linux-5.16.16. Fixes #5030.

    • [xry111] - Update to tzdata-2022a. Fixes #5031.

    • [xry111] - Update to man-db-2.10.2. Fixes #5032.

  • 2022-03-16

    • [xry111] - Update to MarkupSafe-2.1.1. Fixes #5025.

  • 2022-03-15

    • [bdubbs] - Update to openssl-3.0.2. Fixes #5024.

    • [bdubbs] - Update to meson-0.61.3. Fixes #5023.

    • [xry111] - Update to expat-2.4.7. Fixes #5019.

    • [xry111] - Update to bc-5.2.3. Fixes #5020.

    • [xry111] - Update to linux-5.16.14 (security fix). Fixes #5021.

    • [xry111] - Update to perl-5.34.1. Fixes #5022.

    • [xry111] - Update to vim-8.2.4567 (security fix). Addresses #4500.

  • 2022-03-05

    • [xry111] - Stop changing the owner of $LFS/source to lfs. Fixes #5018.

    • [xry111] - Add zstd-1.5.2 upstream fixes patch.

  • 2022-03-02

    • [xry111] - Update to meson-0.61.2. Fixes #5013.

    • [xry111] - Update to linux-5.16.12. Fixes #5014.

    • [xry111] - Update to MarkupSafe-2.1.0. Fixes #5015.

    • [xry111] - Update to vim-8.2.4489 (security fixes). Addresses #4500.

    • [xry111] - Build libstdc++ in GCC pass 2, and remove the separate libstdc++ pass 2.

    • [xry111] - Remove unneeded --enable-64bit for tcl.

  • 2022-03-01

    • [bdubbs] - LFS-11.1 released.

1.4. Resources

1.4.1. FAQ

If during the building of the LFS system you encounter any errors, have any questions, or think there is a typo in the book, please start by consulting the Frequently Asked Questions (FAQ) that is located at https://www.linuxfromscratch.org/faq/.

1.4.2. Mailing Lists

The linuxfromscratch.org server hosts a number of mailing lists used for the development of the LFS project. These lists include the main development and support lists, among others. If the FAQ does not solve the problem you are having, the next step would be to search the mailing lists at https://www.linuxfromscratch.org/search.html.

For information on the different lists, how to subscribe, archive locations, and additional information, visit https://www.linuxfromscratch.org/mail.html.

1.4.3. IRC

Several members of the LFS community offer assistance on Internet Relay Chat (IRC). Before using this support, please make sure that your question is not already answered in the LFS FAQ or the mailing list archives. You can find the IRC network at irc.libera.chat. The support channel is named #lfs-support.

1.4.4. Mirror Sites

The LFS project has a number of world-wide mirrors to make accessing the website and downloading the required packages more convenient. Please visit the LFS website at https://www.linuxfromscratch.org/mirrors.html for a list of current mirrors.

1.4.5. Contact Information

Please direct all your questions and comments to one of the LFS mailing lists (see above).

1.5. Help

If an issue or a question is encountered while working through this book, please check the FAQ page at https://www.linuxfromscratch.org/faq/#generalfaq. Questions are often already answered there. If your question is not answered on this page, try to find the source of the problem. The following hint will give you some guidance for troubleshooting: https://www.linuxfromscratch.org/hints/downloads/files/errors.txt.

If you cannot find your problem listed in the FAQ, search the mailing lists at https://www.linuxfromscratch.org/search.html.

We also have a wonderful LFS community that is willing to offer assistance through the mailing lists and IRC (see the Section 1.4, “Resources” section of this book). However, we get several support questions every day and many of them can be easily answered by going to the FAQ and by searching the mailing lists first. So, for us to offer the best assistance possible, you need to do some research on your own first. That allows us to focus on the more unusual support needs. If your searches do not produce a solution, please include all relevant information (mentioned below) in your request for help.

1.5.1. Things to Mention

Apart from a brief explanation of the problem being experienced, the essential things to include in any request for help are:

  • The version of the book being used (in this case 11.2)

  • The host distribution and version being used to create LFS

  • The output from the Host System Requirements script

  • The package or section the problem was encountered in

  • The exact error message or symptom being received

  • Note whether you have deviated from the book at all

Note

Deviating from this book does not mean that we will not help you. After all, LFS is about personal preference. Being upfront about any changes to the established procedure helps us evaluate and determine possible causes of your problem.

1.5.2. Configure Script Problems

If something goes wrong while running the configure script, review the config.log file. This file may contain errors encountered during configure which were not printed to the screen. Include the relevant lines if you need to ask for help.

1.5.3. Compilation Problems

Both the screen output and the contents of various files are useful in determining the cause of compilation problems. The screen output from the configure script and the make run can be helpful. It is not necessary to include the entire output, but do include enough of the relevant information. Below is an example of the type of information to include from the screen output from make:

gcc -DALIASPATH=\"/mnt/lfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/lfs/usr/share/locale\"
-DLIBDIR=\"/mnt/lfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/lfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/lfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/lfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/lfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2

In this case, many people would just include the bottom section:

make [2]: *** [make] Error 1

This is not enough information to properly diagnose the problem because it only notes that something went wrong, not what went wrong. The entire section, as in the example above, is what should be saved because it includes the command that was executed and the associated error message(s).

An excellent article about asking for help on the Internet is available online at http://catb.org/~esr/faqs/smart-questions.html. Read and follow the hints in this document to increase the likelihood of getting the help you need.

Part II. Preparing for the Build

Chapter 2. Preparing the Host System

2.1. Introduction

In this chapter, the host tools needed for building LFS are checked and, if necessary, installed. Then a partition which will host the LFS system is prepared. We will create the partition itself, create a file system on it, and mount it.

2.2. Host System Requirements

Your host system should have the following software with the minimum versions indicated. This should not be an issue for most modern Linux distributions. Also note that many distributions will place software headers into separate packages, often in the form of <package-name>-devel or <package-name>-dev. Be sure to install those if your distribution provides them.

Earlier versions of the listed software packages may work, but have not been tested.

  • Bash-3.2 (/bin/sh should be a symbolic or hard link to bash)

  • Binutils-2.13.1 (Versions greater than 2.39 are not recommended as they have not been tested)

  • Bison-2.7 (/usr/bin/yacc should be a link to bison or small script that executes bison)

  • Coreutils-6.9

  • Diffutils-2.8.1

  • Findutils-4.2.31

  • Gawk-4.0.1 (/usr/bin/awk should be a link to gawk)

  • GCC-4.8 including the C++ compiler, g++ (Versions greater than 12.2.0 are not recommended as they have not been tested). C and C++ standard libraries (with headers) must also be present so the C++ compiler can build hosted programs

  • Grep-2.5.1a

  • Gzip-1.3.12

  • Linux Kernel-3.2

    The reason for the kernel version requirement is that we specify that version when building glibc in Chapter 5 and Chapter 8, at the recommendation of the developers. It is also required by udev.

    If the host kernel is earlier than 3.2 you will need to replace the kernel with a more up to date version. There are two ways you can go about this. First, see if your Linux vendor provides a 3.2 or later kernel package. If so, you may wish to install it. If your vendor doesn't offer an acceptable kernel package, or you would prefer not to install it, you can compile a kernel yourself. Instructions for compiling the kernel and configuring the boot loader (assuming the host uses GRUB) are located in Chapter 10.

  • M4-1.4.10

  • Make-4.0

  • Patch-2.5.4

  • Perl-5.8.8

  • Python-3.4

  • Sed-4.1.5

  • Tar-1.22

  • Texinfo-4.7

  • Xz-5.0.0

Important

Note that the symlinks mentioned above are required to build an LFS system using the instructions contained within this book. Symlinks that point to other software (such as dash, mawk, etc.) may work, but are not tested or supported by the LFS development team, and may require either deviation from the instructions or additional patches to some packages.

To see whether your host system has all the appropriate versions, and the ability to compile programs, run the following:

cat > version-check.sh << "EOF"
#!/bin/bash
# Simple script to list version numbers of critical development tools
export LC_ALL=C
bash --version | head -n1 | cut -d" " -f2-4
MYSH=$(readlink -f /bin/sh)
echo "/bin/sh -> $MYSH"
echo $MYSH | grep -q bash || echo "ERROR: /bin/sh does not point to bash"
unset MYSH

echo -n "Binutils: "; ld --version | head -n1 | cut -d" " -f3-
bison --version | head -n1

if [ -h /usr/bin/yacc ]; then
  echo "/usr/bin/yacc -> `readlink -f /usr/bin/yacc`";
elif [ -x /usr/bin/yacc ]; then
  echo yacc is `/usr/bin/yacc --version | head -n1`
else
  echo "yacc not found"
fi

echo -n "Coreutils: "; chown --version | head -n1 | cut -d")" -f2
diff --version | head -n1
find --version | head -n1
gawk --version | head -n1

if [ -h /usr/bin/awk ]; then
  echo "/usr/bin/awk -> `readlink -f /usr/bin/awk`";
elif [ -x /usr/bin/awk ]; then
  echo awk is `/usr/bin/awk --version | head -n1`
else
  echo "awk not found"
fi

gcc --version | head -n1
g++ --version | head -n1
grep --version | head -n1
gzip --version | head -n1
cat /proc/version
m4 --version | head -n1
make --version | head -n1
patch --version | head -n1
echo Perl `perl -V:version`
python3 --version
sed --version | head -n1
tar --version | head -n1
makeinfo --version | head -n1  # texinfo version
xz --version | head -n1

echo 'int main(){}' > dummy.c && g++ -o dummy dummy.c
if [ -x dummy ]
  then echo "g++ compilation OK";
  else echo "g++ compilation failed"; fi
rm -f dummy.c dummy
EOF

bash version-check.sh

2.3. Building LFS in Stages

LFS is designed to be built in one session. That is, the instructions assume that the system will not be shut down during the process. That does not mean that the system has to be done in one sitting. The issue is that certain procedures have to be re-accomplished after a reboot if resuming LFS at different points.

2.3.1. Chapters 1–4

These chapters are accomplished on the host system. When restarting, be careful of the following:

  • Procedures done as the root user after Section 2.4 need to have the LFS environment variable set FOR THE ROOT USER.

2.3.2. Chapter 5–6

  • The /mnt/lfs partition must be mounted.

  • These two chapters must be done as user lfs. A su - lfs needs to be done before any task in these chapters. Failing to do that, you are at risk of installing packages to the host, and potentially rendering it unusable.

  • The procedures in General Compilation Instructions are critical. If there is any doubt about installing a package, ensure any previously expanded tarballs are removed, then re-extract the package files, and complete all instructions in that section.

2.3.3. Chapter 7–10

  • The /mnt/lfs partition must be mounted.

  • A few operations, from Changing Ownership to Entering the Chroot Environment must be done as the root user, with the LFS environment variable set for the root user.

  • When entering chroot, the LFS environment variable must be set for root. The LFS variable is not used afterwards.

  • The virtual file systems must be mounted. This can be done before or after entering chroot by changing to a host virtual terminal and, as root, running the commands in Section 7.3.1, “Mounting and Populating /dev” and Section 7.3.2, “Mounting Virtual Kernel File Systems”.

2.4. Creating a New Partition

Like most other operating systems, LFS is usually installed on a dedicated partition. The recommended approach to building an LFS system is to use an available empty partition or, if you have enough unpartitioned space, to create one.

A minimal system requires a partition of around 10 gigabytes (GB). This is enough to store all the source tarballs and compile the packages. However, if the LFS system is intended to be the primary Linux system, additional software will probably be installed which will require additional space. A 30 GB partition is a reasonable size to provide for growth. The LFS system itself will not take up this much room. A large portion of this requirement is to provide sufficient free temporary storage as well as for adding additional capabilities after LFS is complete. Additionally, compiling packages can require a lot of disk space which will be reclaimed after the package is installed.

Because there is not always enough Random Access Memory (RAM) available for compilation processes, it is a good idea to use a small disk partition as swap space. This is used by the kernel to store seldom-used data and leave more memory available for active processes. The swap partition for an LFS system can be the same as the one used by the host system, in which case it is not necessary to create another one.

Start a disk partitioning program such as cfdisk or fdisk with a command line option naming the hard disk on which the new partition will be created—for example /dev/sda for the primary disk drive. Create a Linux native partition and a swap partition, if needed. Please refer to cfdisk(8) or fdisk(8) if you do not yet know how to use the programs.

Note

For experienced users, other partitioning schemes are possible. The new LFS system can be on a software RAID array or an LVM logical volume. However, some of these options require an initramfs, which is an advanced topic. These partitioning methodologies are not recommended for first time LFS users.

Remember the designation of the new partition (e.g., sda5). This book will refer to this as the LFS partition. Also remember the designation of the swap partition. These names will be needed later for the /etc/fstab file.

2.4.1. Other Partition Issues

Requests for advice on system partitioning are often posted on the LFS mailing lists. This is a highly subjective topic. The default for most distributions is to use the entire drive with the exception of one small swap partition. This is not optimal for LFS for several reasons. It reduces flexibility, makes sharing of data across multiple distributions or LFS builds more difficult, makes backups more time consuming, and can waste disk space through inefficient allocation of file system structures.

2.4.1.1. The Root Partition

A root LFS partition (not to be confused with the /root directory) of twenty gigabytes is a good compromise for most systems. It provides enough space to build LFS and most of BLFS, but is small enough so that multiple partitions can be easily created for experimentation.

2.4.1.2. The Swap Partition

Most distributions automatically create a swap partition. Generally the recommended size of the swap partition is about twice the amount of physical RAM, however this is rarely needed. If disk space is limited, hold the swap partition to two gigabytes and monitor the amount of disk swapping.

If you want to use the hibernation feature (suspend-to-disk) of Linux, it writes out the contents of RAM to the swap partition before turning off the machine. In this case the size of the swap partition should be at least as large as the system's installed RAM.

Swapping is never good. For mechanical hard drives you can generally tell if a system is swapping by just listening to disk activity and observing how the system reacts to commands. For an SSD drive you will not be able to hear swapping but you can tell how much swap space is being used by the top or free programs. Use of an SSD drive for a swap partition should be avoided if possible. The first reaction to swapping should be to check for an unreasonable command such as trying to edit a five gigabyte file. If swapping becomes a normal occurrence, the best solution is to purchase more RAM for your system.

2.4.1.3. The Grub Bios Partition

If the boot disk has been partitioned with a GUID Partition Table (GPT), then a small, typically 1 MB, partition must be created if it does not already exist. This partition is not formatted, but must be available for GRUB to use during installation of the boot loader. This partition will normally be labeled 'BIOS Boot' if using fdisk or have a code of EF02 if using gdisk.

Note

The Grub Bios partition must be on the drive that the BIOS uses to boot the system. This is not necessarily the same drive where the LFS root partition is located. Disks on a system may use different partition table types. The requirement for this partition depends only on the partition table type of the boot disk.

2.4.1.4. Convenience Partitions

There are several other partitions that are not required, but should be considered when designing a disk layout. The following list is not comprehensive, but is meant as a guide.

  • /boot – Highly recommended. Use this partition to store kernels and other booting information. To minimize potential boot problems with larger disks, make this the first physical partition on your first disk drive. A partition size of 200 megabytes is quite adequate.

  • /boot/efi – The EFI System Partition, which is needed for booting the system with UEFI. Read the BLFS page for details.

  • /home – Highly recommended. Share your home directory and user customization across multiple distributions or LFS builds. The size is generally fairly large and depends on available disk space.

  • /usr – In LFS, /bin, /lib, and /sbin are symlinks to their counterpart in /usr. So /usr contains all binaries needed for the system to run. For LFS a separate partition for /usr is normally not needed. If you need it anyway, you should make a partition large enough to fit all programs and libraries in the system. The root partition can be very small (maybe just one gigabyte) in this configuration, so it's suitable for a thin client or diskless workstation (where /usr is mounted from a remote server). However you should take care that an initramfs (not covered by LFS) will be needed to boot a system with separate /usr partition.

  • /opt – This directory is most useful for BLFS where multiple installations of large packages like Gnome or KDE can be installed without embedding the files in the /usr hierarchy. If used, 5 to 10 gigabytes is generally adequate.

  • /tmp – A separate /tmp directory is rare, but useful if configuring a thin client. This partition, if used, will usually not need to exceed a couple of gigabytes.

  • /usr/src – This partition is very useful for providing a location to store BLFS source files and share them across LFS builds. It can also be used as a location for building BLFS packages. A reasonably large partition of 30-50 gigabytes allows plenty of room.

Any separate partition that you want automatically mounted upon boot needs to be specified in the /etc/fstab. Details about how to specify partitions will be discussed in Section 10.2, “Creating the /etc/fstab File”.

2.5. Creating a File System on the Partition

Now that a blank partition has been set up, the file system can be created. LFS can use any file system recognized by the Linux kernel, but the most common types are ext3 and ext4. The choice of file system can be complex and depends on the characteristics of the files and the size of the partition. For example:

ext2

is suitable for small partitions that are updated infrequently such as /boot.

ext3

is an upgrade to ext2 that includes a journal to help recover the partition's status in the case of an unclean shutdown. It is commonly used as a general purpose file system.

ext4

is the latest version of the ext file system family of partition types. It provides several new capabilities including nano-second timestamps, creation and use of very large files (16 TB), and speed improvements.

Other file systems, including FAT32, NTFS, ReiserFS, JFS, and XFS are useful for specialized purposes. More information about these file systems can be found at http://en.wikipedia.org/wiki/Comparison_of_file_systems.

LFS assumes that the root file system (/) is of type ext4. To create an ext4 file system on the LFS partition, run the following:

mkfs -v -t ext4 /dev/<xxx>

Replace <xxx> with the name of the LFS partition.

If you are using an existing swap partition, there is no need to format it. If a new swap partition was created, it will need to be initialized with this command:

mkswap /dev/<yyy>

Replace <yyy> with the name of the swap partition.

2.6. Setting The $LFS Variable

Throughout this book, the environment variable LFS will be used several times. You should ensure that this variable is always defined throughout the LFS build process. It should be set to the name of the directory where you will be building your LFS system - we will use /mnt/lfs as an example, but the directory choice is up to you. If you are building LFS on a separate partition, this directory will be the mount point for the partition. Choose a directory location and set the variable with the following command:

export LFS=/mnt/lfs

Having this variable set is beneficial in that commands such as mkdir -v $LFS/tools can be typed literally. The shell will automatically replace $LFS with /mnt/lfs (or whatever the variable was set to) when it processes the command line.

Caution

Do not forget to check that LFS is set whenever you leave and reenter the current working environment (such as when doing a su to root or another user). Check that the LFS variable is set up properly with:

echo $LFS

Make sure the output shows the path to your LFS system's build location, which is /mnt/lfs if the provided example was followed. If the output is incorrect, use the command given earlier on this page to set $LFS to the correct directory name.

Note

One way to ensure that the LFS variable is always set is to edit the .bash_profile file in both your personal home directory and in /root/.bash_profile and enter the export command above. In addition, the shell specified in the /etc/passwd file for all users that need the LFS variable needs to be bash to ensure that the /root/.bash_profile file is incorporated as a part of the login process.

Another consideration is the method that is used to log into the host system. If logging in through a graphical display manager, the user's .bash_profile is not normally used when a virtual terminal is started. In this case, add the export command to the .bashrc file for the user and root. In addition, some distributions have instructions to not run the .bashrc instructions in a non-interactive bash invocation. Be sure to add the export command before the test for non-interactive use.

2.7. Mounting the New Partition

Now that a file system has been created, the partition needs to be made accessible. In order to do this, the partition needs to be mounted at a chosen mount point. For the purposes of this book, it is assumed that the file system is mounted under the directory specified by the LFS environment variable as described in the previous section.

Create the mount point and mount the LFS file system by running:

mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS

Replace <xxx> with the designation of the LFS partition.

If using multiple partitions for LFS (e.g., one for / and another for /home), mount them using:

mkdir -pv $LFS
mount -v -t ext4 /dev/<xxx> $LFS
mkdir -v $LFS/home
mount -v -t ext4 /dev/<yyy> $LFS/home

Replace <xxx> and <yyy> with the appropriate partition names.

Ensure that this new partition is not mounted with permissions that are too restrictive (such as the nosuid or nodev options). Run the mount command without any parameters to see what options are set for the mounted LFS partition. If nosuid and/or nodev are set, the partition will need to be remounted.

Warning

The above instructions assume that you will not be restarting your computer throughout the LFS process. If you shut down your system, you will either need to remount the LFS partition each time you restart the build process or modify your host system's /etc/fstab file to automatically remount it upon boot. For example:

/dev/<xxx>  /mnt/lfs ext4   defaults      1     1

If you use additional optional partitions, be sure to add them also.

If you are using a swap partition, ensure that it is enabled using the swapon command:

/sbin/swapon -v /dev/<zzz>

Replace <zzz> with the name of the swap partition.

Now that there is an established place to work, it is time to download the packages.

Chapter 3. Packages and Patches

3.1. Introduction

This chapter includes a list of packages that need to be downloaded in order to build a basic Linux system. The listed version numbers correspond to versions of the software that are known to work, and this book is based on their use. We highly recommend against using different versions because the build commands for one version may not work with a different version, unless the different version is specified by a LFS errata or security advisory. The newest package versions may also have problems that require work-arounds. These work-arounds will be developed and stabilized in the development version of the book.

For some packages, the release tarball and the (Git or SVN) repository snapshot tarball for this release may be published with similar file name. A release tarball contains generated files (for example, configure script generated by autoconf), in addition to the contents of the corresponding repository snapshot. The book uses release tarballs whenever possible. Using a repository snapshot instead of a release tarball specified by the book will cause problems.

Download locations may not always be accessible. If a download location has changed since this book was published, Google (http://www.google.com/) provides a useful search engine for most packages. If this search is unsuccessful, try one of the alternative means of downloading at https://www.linuxfromscratch.org/lfs/mirrors.html#files.

Downloaded packages and patches will need to be stored somewhere that is conveniently available throughout the entire build. A working directory is also required to unpack the sources and build them. $LFS/sources can be used both as the place to store the tarballs and patches and as a working directory. By using this directory, the required elements will be located on the LFS partition and will be available during all stages of the building process.

To create this directory, execute the following command, as user root, before starting the download session:

mkdir -v $LFS/sources

Make this directory writable and sticky. Sticky means that even if multiple users have write permission on a directory, only the owner of a file can delete the file within a sticky directory. The following command will enable the write and sticky modes:

chmod -v a+wt $LFS/sources

There are several ways to obtain all the necessary packages and patches to build LFS:

  • The files can be downloaded individually as described in the next two sections.

  • For stable versions of the book, a tarball of all the needed files can be downloaded from one of the LFS files mirrors listed at https://www.linuxfromscratch.org/mirrors.html#files.

  • The files can be downloaded using wget and a wget-list as described below.

To download all of the packages and patches by using wget-list-sysv as an input to the wget command, use:

wget --input-file=wget-list-sysv --continue --directory-prefix=$LFS/sources

Additionally, starting with LFS-7.0, there is a separate file, md5sums, which can be used to verify that all the correct packages are available before proceeding. Place that file in $LFS/sources and run:

pushd $LFS/sources
  md5sum -c md5sums
popd

This check can be used after retrieving the needed files with any of the methods listed above.

3.2. All Packages

Note

Read the security advisories before downloading packages to figure out if a newer version of any package should be used to avoid security vulnerabilities.

The upstreams may remove old releases, especially when these releases contain a security vulnerability. If one URL below is not reachable, you should read the security advisories first to figure out if a newer version (with the vulnerability fixed) should be used. If not, try to download the removed package from a mirror. Although it's possible to download an old release from a mirror even if this release has been removed because of a vulnerability, it's not recommended to use a release known to be vulnerable for building your system.

Download or otherwise obtain the following packages:

Acl (2.3.1) - 348 KB:

Home page: https://savannah.nongnu.org/projects/acl

Download: https://download.savannah.gnu.org/releases/acl/acl-2.3.1.tar.xz

MD5 sum: 95ce715fe09acca7c12d3306d0f076b2

Attr (2.5.1) - 456 KB:

Home page: https://savannah.nongnu.org/projects/attr

Download: https://download.savannah.gnu.org/releases/attr/attr-2.5.1.tar.gz

MD5 sum: ac1c5a7a084f0f83b8cace34211f64d8

Autoconf (2.71) - 1,263 KB:

Home page: https://www.gnu.org/software/autoconf/

Download: https://ftp.gnu.org/gnu/autoconf/autoconf-2.71.tar.xz

MD5 sum: 12cfa1687ffa2606337efe1a64416106

Automake (1.16.5) - 1,565 KB:

Home page: https://www.gnu.org/software/automake/

Download: https://ftp.gnu.org/gnu/automake/automake-1.16.5.tar.xz

MD5 sum: 4017e96f89fca45ca946f1c5db6be714

SHA256 sum: 80facc09885a57e6d49d06972c0ae1089c5fa8f4d4c7cfe5baea58e5085f136d

Bash (5.1.16) - 10,277 KB:

Home page: https://www.gnu.org/software/bash/

Download: https://ftp.gnu.org/gnu/bash/bash-5.1.16.tar.gz

MD5 sum: c17b20a09fc38d67fb303aeb6c130b4e

Bc (6.0.1) - 441 KB:

Home page: https://git.yzena.com/gavin/bc

Download: https://github.com/gavinhoward/bc/releases/download/6.0.1/bc-6.0.1.tar.xz

MD5 sum: 4c8b8d51eb52ee66f5bcf6a6a1ca576e

Binutils (2.39) - 24,578 KB:

Home page: https://www.gnu.org/software/binutils/

Download: https://ftp.gnu.org/gnu/binutils/binutils-2.39.tar.xz

MD5 sum: f7e986ae9ff06405cafb2e585ee36d27

Bison (3.8.2) - 2,752 KB:

Home page: https://www.gnu.org/software/bison/

Download: https://ftp.gnu.org/gnu/bison/bison-3.8.2.tar.xz

MD5 sum: c28f119f405a2304ff0a7ccdcc629713

Bzip2 (1.0.8) - 792 KB:

Download: https://www.sourceware.org/pub/bzip2/bzip2-1.0.8.tar.gz

MD5 sum: 67e051268d0c475ea773822f7500d0e5

Check (0.15.2) - 760 KB:

Home page: https://libcheck.github.io/check

Download: https://github.com/libcheck/check/releases/download/0.15.2/check-0.15.2.tar.gz

MD5 sum: 50fcafcecde5a380415b12e9c574e0b2

Coreutils (9.1) - 5,570 KB:

Home page: https://www.gnu.org/software/coreutils/

Download: https://ftp.gnu.org/gnu/coreutils/coreutils-9.1.tar.xz

MD5 sum: 8b1ca4e018a7dce9bb937faec6618671

DejaGNU (1.6.3) - 608 KB:

Home page: https://www.gnu.org/software/dejagnu/

Download: https://ftp.gnu.org/gnu/dejagnu/dejagnu-1.6.3.tar.gz

MD5 sum: 68c5208c58236eba447d7d6d1326b821

Diffutils (3.8) - 1,548 KB:

Home page: https://www.gnu.org/software/diffutils/

Download: https://ftp.gnu.org/gnu/diffutils/diffutils-3.8.tar.xz

MD5 sum: 6a6b0fdc72acfe3f2829aab477876fbc

E2fsprogs (1.46.5) - 9,307 KB:

Home page: http://e2fsprogs.sourceforge.net/

Download: https://downloads.sourceforge.net/project/e2fsprogs/e2fsprogs/v1.46.5/e2fsprogs-1.46.5.tar.gz

MD5 sum: 3da91854c960ad8a819b48b2a404eb43

Elfutils (0.187) - 9,024 KB:

Home page: https://sourceware.org/elfutils/

Download: https://sourceware.org/ftp/elfutils/0.187/elfutils-0.187.tar.bz2

MD5 sum: cc04f07b53a71616b22553c0a458cf4b

Eudev (3.2.11) - 2,075 KB:

Download: https://github.com/eudev-project/eudev/releases/download/v3.2.11/eudev-3.2.11.tar.gz

MD5 sum: 417ba948335736d4d81874fba47a30f7

Expat (2.4.8) - 444 KB:

Home page: https://libexpat.github.io/

Download: https://prdownloads.sourceforge.net/expat/expat-2.4.8.tar.xz

MD5 sum: 0584a7318a4c007f7ec94778799d72fe

Expect (5.45.4) - 618 KB:

Home page: https://core.tcl.tk/expect/

Download: https://prdownloads.sourceforge.net/expect/expect5.45.4.tar.gz

MD5 sum: 00fce8de158422f5ccd2666512329bd2

File (5.42) - 1,080 KB:

Home page: https://www.darwinsys.com/file/

Download: https://astron.com/pub/file/file-5.42.tar.gz

MD5 sum: 4d4f70c3b08a8a70d8baf67f085d7e92

Findutils (4.9.0) - 1,999 KB:

Home page: https://www.gnu.org/software/findutils/

Download: https://ftp.gnu.org/gnu/findutils/findutils-4.9.0.tar.xz

MD5 sum: 4a4a547e888a944b2f3af31d789a1137

Flex (2.6.4) - 1,386 KB:

Home page: https://github.com/westes/flex

Download: https://github.com/westes/flex/releases/download/v2.6.4/flex-2.6.4.tar.gz

MD5 sum: 2882e3179748cc9f9c23ec593d6adc8d

Gawk (5.1.1) - 3,075 KB:

Home page: https://www.gnu.org/software/gawk/

Download: https://ftp.gnu.org/gnu/gawk/gawk-5.1.1.tar.xz

MD5 sum: 83650aa943ff2fd519b2abedf8506ace

GCC (12.2.0) - 82,662 KB:

Home page: https://gcc.gnu.org/

Download: https://ftp.gnu.org/gnu/gcc/gcc-12.2.0/gcc-12.2.0.tar.xz

MD5 sum: 73bafd0af874439dcdb9fc063b6fb069

SHA256 sum:

GDBM (1.23) - 1,092 KB:

Home page: https://www.gnu.org/software/gdbm/

Download: https://ftp.gnu.org/gnu/gdbm/gdbm-1.23.tar.gz

MD5 sum: 8551961e36bf8c70b7500d255d3658ec

Gettext (0.21) - 9,487 KB:

Home page: https://www.gnu.org/software/gettext/

Download: https://ftp.gnu.org/gnu/gettext/gettext-0.21.tar.xz

MD5 sum: 40996bbaf7d1356d3c22e33a8b255b31

Glibc (2.36) - 18,175 KB:

Home page: https://www.gnu.org/software/libc/

Download: https://ftp.gnu.org/gnu/glibc/glibc-2.36.tar.xz

MD5 sum: 00e9b89e043340f688bc93ec03239b57

GMP (6.2.1) - 1,980 KB:

Home page: https://www.gnu.org/software/gmp/

Download: https://ftp.gnu.org/gnu/gmp/gmp-6.2.1.tar.xz

MD5 sum: 0b82665c4a92fd2ade7440c13fcaa42b

Gperf (3.1) - 1,188 KB:

Home page: https://www.gnu.org/software/gperf/

Download: https://ftp.gnu.org/gnu/gperf/gperf-3.1.tar.gz

MD5 sum: 9e251c0a618ad0824b51117d5d9db87e

Grep (3.7) - 1,603 KB:

Home page: https://www.gnu.org/software/grep/

Download: https://ftp.gnu.org/gnu/grep/grep-3.7.tar.xz

MD5 sum: 7c9cca97fa18670a21e72638c3e1dabf

Groff (1.22.4) - 4,044 KB:

Home page: https://www.gnu.org/software/groff/

Download: https://ftp.gnu.org/gnu/groff/groff-1.22.4.tar.gz

MD5 sum: 08fb04335e2f5e73f23ea4c3adbf0c5f

GRUB (2.06) - 6,428 KB:

Home page: https://www.gnu.org/software/grub/

Download: https://ftp.gnu.org/gnu/grub/grub-2.06.tar.xz

MD5 sum: cf0fd928b1e5479c8108ee52cb114363

Gzip (1.12) - 807 KB:

Home page: https://www.gnu.org/software/gzip/

Download: https://ftp.gnu.org/gnu/gzip/gzip-1.12.tar.xz

MD5 sum: 9608e4ac5f061b2a6479dc44e917a5db

Iana-Etc (20220812) - 584 KB:

Home page: https://www.iana.org/protocols

Download: https://github.com/Mic92/iana-etc/releases/download/20220812/iana-etc-20220812.tar.gz

MD5 sum: 851a53efd53c77d0ad7b3d2b68d8a3fc

Inetutils (2.3) - 1,518 KB:

Home page: https://www.gnu.org/software/inetutils/

Download: https://ftp.gnu.org/gnu/inetutils/inetutils-2.3.tar.xz

MD5 sum: e73e2ed42d73ceb47616b20131236036

SHA256 sum:

Intltool (0.51.0) - 159 KB:

Home page: https://freedesktop.org/wiki/Software/intltool

Download: https://launchpad.net/intltool/trunk/0.51.0/+download/intltool-0.51.0.tar.gz

MD5 sum: 12e517cac2b57a0121cda351570f1e63

IPRoute2 (5.19.0) - 872 KB:

Home page: https://www.kernel.org/pub/linux/utils/net/iproute2/

Download: https://www.kernel.org/pub/linux/utils/net/iproute2/iproute2-5.19.0.tar.xz

MD5 sum: 415bd9eeb8515a585e245809d2fe45a6

Kbd (2.5.1) - 1,457 KB:

Home page: https://kbd-project.org/

Download: https://www.kernel.org/pub/linux/utils/kbd/kbd-2.5.1.tar.xz

MD5 sum: 10f10c0a9d897807733f2e2419814abb

Kmod (30) - 555 KB:

Download: https://www.kernel.org/pub/linux/utils/kernel/kmod/kmod-30.tar.xz

MD5 sum: 85202f0740a75eb52f2163c776f9b564

Less (590) - 348 KB:

Home page: https://www.greenwoodsoftware.com/less/

Download: https://www.greenwoodsoftware.com/less/less-590.tar.gz

MD5 sum: f029087448357812fba450091a1172ab

LFS-Bootscripts (20220723) - 33 KB:

Download: https://www.linuxfromscratch.org/lfs/downloads/11.2/lfs-bootscripts-20220723.tar.xz

MD5 sum: 74884d0d91616f843599c99a333666da

Libcap (2.65) - 176 KB:

Home page: https://sites.google.com/site/fullycapable/

Download: https://www.kernel.org/pub/linux/libs/security/linux-privs/libcap2/libcap-2.65.tar.xz

MD5 sum: 3543e753dd941255c4def6cc67a462bb

Libffi (3.4.2) - 1,320 KB:

Home page: https://sourceware.org/libffi/

Download: https://github.com/libffi/libffi/releases/download/v3.4.2/libffi-3.4.2.tar.gz

MD5 sum: 294b921e6cf9ab0fbaea4b639f8fdbe8

Libpipeline (1.5.6) - 954 KB:

Home page: http://libpipeline.nongnu.org/

Download: https://download.savannah.gnu.org/releases/libpipeline/libpipeline-1.5.6.tar.gz

MD5 sum: 829c9ba46382b0b3e12dd11fcbc1bb27

Libtool (2.4.7) - 996 KB:

Home page: https://www.gnu.org/software/libtool/

Download: https://ftp.gnu.org/gnu/libtool/libtool-2.4.7.tar.xz

MD5 sum: 2fc0b6ddcd66a89ed6e45db28fa44232

Linux (5.19.2) - 128,553 KB:

Home page: https://www.kernel.org/

Download: https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.19.2.tar.xz

MD5 sum: 391274e2e49a881403b0ff2e0712bf82

Note

The Linux kernel is updated relatively often, many times due to discoveries of security vulnerabilities. The latest available stable kernel version may be used, unless the errata page says otherwise.

For users with limited speed or expensive bandwidth who wish to update the Linux kernel, a baseline version of the package and patches can be downloaded separately. This may save some time or cost for a subsequent patch level upgrade within a minor release.

M4 (1.4.19) - 1,617 KB:

Home page: https://www.gnu.org/software/m4/

Download: https://ftp.gnu.org/gnu/m4/m4-1.4.19.tar.xz

MD5 sum: 0d90823e1426f1da2fd872df0311298d

Make (4.3) - 2,263 KB:

Home page: https://www.gnu.org/software/make/

Download: https://ftp.gnu.org/gnu/make/make-4.3.tar.gz

MD5 sum: fc7a67ea86ace13195b0bce683fd4469

Man-DB (2.10.2) - 1,860 KB:

Home page: https://www.nongnu.org/man-db/

Download: https://download.savannah.gnu.org/releases/man-db/man-db-2.10.2.tar.xz

MD5 sum: e327f7af3786d15e5851658ae7ef47ed

Man-pages (5.13) - 1,752 KB:

Home page: https://www.kernel.org/doc/man-pages/

Download: https://www.kernel.org/pub/linux/docs/man-pages/man-pages-5.13.tar.xz

MD5 sum: 3ac24e8c6fae26b801cb87ceb63c0a30

Meson (0.63.1) - 2,016 KB:

Home page: https://mesonbuild.com

Download: https://github.com/mesonbuild/meson/releases/download/0.63.1/meson-0.63.1.tar.gz

MD5 sum: 078e59d11a72b74c3bd78cb8205e9ed7

MPC (1.2.1) - 820 KB:

Home page: http://www.multiprecision.org/

Download: https://ftp.gnu.org/gnu/mpc/mpc-1.2.1.tar.gz

MD5 sum: 9f16c976c25bb0f76b50be749cd7a3a8

MPFR (4.1.0) - 1,490 KB:

Home page: https://www.mpfr.org/

Download: https://ftp.gnu.org/gnu/mpfr/mpfr-4.1.0.tar.xz

MD5 sum: bdd3d5efba9c17da8d83a35ec552baef

Ncurses (6.3) - 3,500 KB:

Home page: https://www.gnu.org/software/ncurses/

Download: https://invisible-mirror.net/archives/ncurses/ncurses-6.3.tar.gz

MD5 sum: a2736befde5fee7d2b7eb45eb281cdbe

Ninja (1.11.0) - 228 KB:

Home page: https://ninja-build.org/

Download: https://github.com/ninja-build/ninja/archive/v1.11.0/ninja-1.11.0.tar.gz

MD5 sum: 7d1a1a2f5cdc06795b3054df5c17d5ef

OpenSSL (3.0.5) - 14,722 KB:

Home page: https://www.openssl.org/

Download: https://www.openssl.org/source/openssl-3.0.5.tar.gz

MD5 sum: 163bb3e58c143793d1dc6a6ec7d185d5

Patch (2.7.6) - 766 KB:

Home page: https://savannah.gnu.org/projects/patch/

Download: https://ftp.gnu.org/gnu/patch/patch-2.7.6.tar.xz

MD5 sum: 78ad9937e4caadcba1526ef1853730d5

Perl (5.36.0) - 12,746 KB:

Home page: https://www.perl.org/

Download: https://www.cpan.org/src/5.0/perl-5.36.0.tar.xz

MD5 sum: 826e42da130011699172fd655e49cfa2

Pkg-config (0.29.2) - 1,970 KB:

Home page: https://www.freedesktop.org/wiki/Software/pkg-config

Download: https://pkg-config.freedesktop.org/releases/pkg-config-0.29.2.tar.gz

MD5 sum: f6e931e319531b736fadc017f470e68a

Procps (4.0.0) - 979 KB:

Home page: https://sourceforge.net/projects/procps-ng

Download: https://sourceforge.net/projects/procps-ng/files/Production/procps-ng-4.0.0.tar.xz

MD5 sum: eedf93f2f6083afb7abf72188018e1e5

Psmisc (23.5) - 395 KB:

Home page: https://gitlab.com/psmisc/psmisc

Download: https://sourceforge.net/projects/psmisc/files/psmisc/psmisc-23.5.tar.xz

MD5 sum: 014f0b5d5ab32478a2c57812ad01e1fb

Python (3.10.6) - 19,142 KB:

Home page: https://www.python.org/

Download: https://www.python.org/ftp/python/3.10.6/Python-3.10.6.tar.xz

MD5 sum: afc7e14f7118d10d1ba95ae8e2134bf0

Python Documentation (3.10.6) - 7,321 KB:

Download: https://www.python.org/ftp/python/doc/3.10.6/python-3.10.6-docs-html.tar.bz2

MD5 sum: 8f32c4f4f0b18ec56e8b3822bbaeb017

Readline (8.1.2) - 2,923 KB:

Home page: https://tiswww.case.edu/php/chet/readline/rltop.html

Download: https://ftp.gnu.org/gnu/readline/readline-8.1.2.tar.gz

MD5 sum: 12819fa739a78a6172400f399ab34f81

Sed (4.8) - 1,317 KB:

Home page: https://www.gnu.org/software/sed/

Download: https://ftp.gnu.org/gnu/sed/sed-4.8.tar.xz

MD5 sum: 6d906edfdb3202304059233f51f9a71d

Shadow (4.12.2) - 1,706 KB:

Home page: https://shadow-maint.github.io/shadow/

Download: https://github.com/shadow-maint/shadow/releases/download/4.12.2/shadow-4.12.2.tar.xz

MD5 sum: 52637cb34c357acf85c617cf95da34a6

Sysklogd (1.5.1) - 88 KB:

Home page: https://www.infodrom.org/projects/sysklogd/

Download: https://www.infodrom.org/projects/sysklogd/download/sysklogd-1.5.1.tar.gz

MD5 sum: c70599ab0d037fde724f7210c2c8d7f8

Sysvinit (3.04) - 216 KB:

Home page: https://savannah.nongnu.org/projects/sysvinit

Download: https://download.savannah.gnu.org/releases/sysvinit/sysvinit-3.04.tar.xz

MD5 sum: 9a00e5f15dd2f038f10feee50677ebff

Tar (1.34) - 2,174 KB:

Home page: https://www.gnu.org/software/tar/

Download: https://ftp.gnu.org/gnu/tar/tar-1.34.tar.xz

MD5 sum: 9a08d29a9ac4727130b5708347c0f5cf

Tcl (8.6.12) - 10,112 KB:

Home page: http://tcl.sourceforge.net/

Download: https://downloads.sourceforge.net/tcl/tcl8.6.12-src.tar.gz

MD5 sum: 87ea890821d2221f2ab5157bc5eb885f

Tcl Documentation (8.6.12) - 1,176 KB:

Download: https://downloads.sourceforge.net/tcl/tcl8.6.12-html.tar.gz

MD5 sum: a0d1a5b60bbb68f2f0bd3066a19c527a

Texinfo (6.8) - 4,848 KB:

Home page: https://www.gnu.org/software/texinfo/

Download: https://ftp.gnu.org/gnu/texinfo/texinfo-6.8.tar.xz

MD5 sum: a91b404e30561a5df803e6eb3a53be71

Time Zone Data (2022c) - 423 KB:

Home page: https://www.iana.org/time-zones

Download: https://www.iana.org/time-zones/repository/releases/tzdata2022c.tar.gz

MD5 sum: 4e3b2369b68e713ba5d3f7456f20bfdb

Udev-lfs Tarball (udev-lfs-20171102) - 11 KB:

Download: https://anduin.linuxfromscratch.org/LFS/udev-lfs-20171102.tar.xz

MD5 sum: 27cd82f9a61422e186b9d6759ddf1634

Util-linux (2.38.1) - 7,321 KB:

Home page: https://git.kernel.org/pub/scm/utils/util-linux/util-linux.git/

Download: https://www.kernel.org/pub/linux/utils/util-linux/v2.38/util-linux-2.38.1.tar.xz

MD5 sum: cd11456f4ddd31f7fbfdd9488c0c0d02

Vim (9.0.0228) - 16,372 KB:

Home page: https://www.vim.org

Download: https://anduin.linuxfromscratch.org/LFS/vim-9.0.0228.tar.gz

MD5 sum: bc7e0a4829d94bb4c03a7a6b4ad6a8cf

Note

The version of vim changes daily. To get the latest version, go to https://github.com/vim/vim/tags.

Wheel (0.37.1) - 65 KB:

Home page: https://pypi.org/project/wheel/

Download: https://anduin.linuxfromscratch.org/LFS/wheel-0.37.1.tar.gz

MD5 sum: f490f1399e5903706cb1d4fbed9ecb28

XML::Parser (2.46) - 249 KB:

Home page: https://github.com/chorny/XML-Parser

Download: https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.46.tar.gz

MD5 sum: 80bb18a8e6240fcf7ec2f7b57601c170

Xz Utils (5.2.6) - 1,234 KB:

Home page: https://tukaani.org/xz

Download: https://tukaani.org/xz/xz-5.2.6.tar.xz

MD5 sum: d9cd5698e1ec06cf638c0d2d645e8175

Zlib (1.2.12) - 1259 KB:

Home page: https://www.zlib.net/

Download: https://zlib.net/zlib-1.2.12.tar.xz

MD5 sum: 28687d676c04e7103bb6ff2b9694c471

Zstd (1.5.2) - 1,892 KB:

Home page: https://facebook.github.io/zstd/

Download: https://github.com/facebook/zstd/releases/download/v1.5.2/zstd-1.5.2.tar.gz

MD5 sum: 072b10f71f5820c24761a65f31f43e73

Total size of these packages: about 461 MB

3.3. Needed Patches

In addition to the packages, several patches are also required. These patches correct any mistakes in the packages that should be fixed by the maintainer. The patches also make small modifications to make the packages easier to work with. The following patches will be needed to build an LFS system:

Bzip2 Documentation Patch - 1.6 KB:

Download: https://www.linuxfromscratch.org/patches/lfs/11.2/bzip2-1.0.8-install_docs-1.patch

MD5 sum: 6a5ac7e89b791aae556de0f745916f7f

Coreutils Internationalization Fixes Patch - 166 KB:

Download: https://www.linuxfromscratch.org/patches/lfs/11.2/coreutils-9.1-i18n-1.patch

MD5 sum: c1ac7edf095027460716577633da9fc5

Glibc FHS Patch - 2.8 KB:

Download: https://www.linuxfromscratch.org/patches/lfs/11.2/glibc-2.36-fhs-1.patch

MD5 sum: 9a5997c3452909b1769918c759eff8a2

Kbd Backspace/Delete Fix Patch - 12 KB:

Download: https://www.linuxfromscratch.org/patches/lfs/11.2/kbd-2.5.1-backspace-1.patch

MD5 sum: f75cca16a38da6caa7d52151f7136895

Sysvinit Consolidated Patch - 2.4 KB:

Download: https://www.linuxfromscratch.org/patches/lfs/11.2/sysvinit-3.04-consolidated-1.patch

MD5 sum: 4900322141d493e74020c9cf437b2cdc

Zstd Upstream Fixes Patch - 4 KB:

Download: https://www.linuxfromscratch.org/patches/lfs/11.2/zstd-1.5.2-upstream_fixes-1.patch

MD5 sum: a7e576e3f87415fdf388392b257cdcf3

Total size of these patches: about 188.8 KB

In addition to the above required patches, there exist a number of optional patches created by the LFS community. These optional patches solve minor problems or enable functionality that is not enabled by default. Feel free to peruse the patches database located at https://www.linuxfromscratch.org/patches/downloads/ and acquire any additional patches to suit your system needs.

Chapter 4. Final Preparations

4.1. Introduction

In this chapter, we will perform a few additional tasks to prepare for building the temporary system. We will create a set of directories in $LFS for the installation of the temporary tools, add an unprivileged user to reduce risk, and create an appropriate build environment for that user. We will also explain the unit of time we use to measure how long LFS packages take to build, or SBUs, and give some information about package test suites.

4.2. Creating a limited directory layout in LFS filesystem

The first task performed in the LFS partition is to create a limited directory hierarchy so that programs compiled in Chapter 6 (as well as glibc and libstdc++ in Chapter 5) may be installed in their final location. This is needed so that those temporary programs be overwritten when rebuilding them in Chapter 8.

Create the required directory layout by running the following as root:

mkdir -pv $LFS/{etc,var} $LFS/usr/{bin,lib,sbin}

for i in bin lib sbin; do
  ln -sv usr/$i $LFS/$i
done

case $(uname -m) in
  x86_64) mkdir -pv $LFS/lib64 ;;
esac

Programs in Chapter 6 will be compiled with a cross-compiler (more details in section Toolchain Technical Notes). In order to separate this cross-compiler from the other programs, it will be installed in a special directory. Create this directory with:

mkdir -pv $LFS/tools

4.3. Adding the LFS User

When logged in as user root, making a single mistake can damage or destroy a system. Therefore, the packages in the next two chapters are built as an unprivileged user. You could use your own user name, but to make it easier to set up a clean working environment, create a new user called lfs as a member of a new group (also named lfs) and use this user during the installation process. As root, issue the following commands to add the new user:

groupadd lfs
useradd -s /bin/bash -g lfs -m -k /dev/null lfs

The meaning of the command line options:

-s /bin/bash

This makes bash the default shell for user lfs.

-g lfs

This option adds user lfs to group lfs.

-m

This creates a home directory for lfs.

-k /dev/null

This parameter prevents possible copying of files from a skeleton directory (default is /etc/skel) by changing the input location to the special null device.

lfs

This is the actual name for the created user.

To log in as lfs (as opposed to switching to user lfs when logged in as root, which does not require the lfs user to have a password), give lfs a password:

passwd lfs

Grant lfs full access to all directories under $LFS by making lfs the directory owner:

chown -v lfs $LFS/{usr{,/*},lib,var,etc,bin,sbin,tools}
case $(uname -m) in
  x86_64) chown -v lfs $LFS/lib64 ;;
esac

Note

In some host systems, the following command does not complete properly and suspends the login to the lfs user to the background. If the prompt "lfs:~$" does not appear immediately, entering the fg command will fix the issue.

Next, login as user lfs. This can be done via a virtual console, through a display manager, or with the following substitute/switch user command:

su - lfs

The - instructs su to start a login shell as opposed to a non-login shell. The difference between these two types of shells can be found in detail in bash(1) and info bash.

4.4. Setting Up the Environment

Set up a good working environment by creating two new startup files for the bash shell. While logged in as user lfs, issue the following command to create a new .bash_profile:

cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF

When logged on as user lfs, the initial shell is usually a login shell which reads the /etc/profile of the host (probably containing some settings and environment variables) and then .bash_profile. The exec env -i.../bin/bash command in the .bash_profile file replaces the running shell with a new one with a completely empty environment, except for the HOME, TERM, and PS1 variables. This ensures that no unwanted and potentially hazardous environment variables from the host system leak into the build environment. The technique used here achieves the goal of ensuring a clean environment.

The new instance of the shell is a non-login shell, which does not read, and execute, the contents of /etc/profile or .bash_profile files, but rather reads, and executes, the .bashrc file instead. Create the .bashrc file now:

cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
LFS_TGT=$(uname -m)-lfs-linux-gnu
PATH=/usr/bin
if [ ! -L /bin ]; then PATH=/bin:$PATH; fi
PATH=$LFS/tools/bin:$PATH
CONFIG_SITE=$LFS/usr/share/config.site
export LFS LC_ALL LFS_TGT PATH CONFIG_SITE
EOF

The meaning of the settings in .bashrc

set +h

The set +h command turns off bash's hash function. Hashing is ordinarily a useful feature—bash uses a hash table to remember the full path of executable files to avoid searching the PATH time and again to find the same executable. However, the new tools should be used as soon as they are installed. By switching off the hash function, the shell will always search the PATH when a program is to be run. As such, the shell will find the newly compiled tools in $LFS/tools/bin as soon as they are available without remembering a previous version of the same program provided by the host distro, in /usr/bin or /bin.

umask 022

Setting the user file-creation mask (umask) to 022 ensures that newly created files and directories are only writable by their owner, but are readable and executable by anyone (assuming default modes are used by the open(2) system call, new files will end up with permission mode 644 and directories with mode 755).

LFS=/mnt/lfs

The LFS variable should be set to the chosen mount point.

LC_ALL=POSIX

The LC_ALL variable controls the localization of certain programs, making their messages follow the conventions of a specified country. Setting LC_ALL to POSIX or C (the two are equivalent) ensures that everything will work as expected in the chroot environment.

LFS_TGT=(uname -m)-lfs-linux-gnu

The LFS_TGT variable sets a non-default, but compatible machine description for use when building our cross compiler and linker and when cross compiling our temporary toolchain. More information is contained in Toolchain Technical Notes.

PATH=/usr/bin

Many modern linux distributions have merged /bin and /usr/bin. When this is the case, the standard PATH variable needs just to be set to /usr/bin/ for the Chapter 6 environment. When this is not the case, the following line adds /bin to the path.

if [ ! -L /bin ]; then PATH=/bin:$PATH; fi

If /bin is not a symbolic link, then it has to be added to the PATH variable.

PATH=$LFS/tools/bin:$PATH

By putting $LFS/tools/bin ahead of the standard PATH, the cross-compiler installed at the beginning of Chapter 5 is picked up by the shell immediately after its installation. This, combined with turning off hashing, limits the risk that the compiler from the host be used instead of the cross-compiler.

CONFIG_SITE=$LFS/usr/share/config.site

In Chapter 5 and Chapter 6, if this variable is not set, configure scripts may attempt to load configuration items specific to some distributions from /usr/share/config.site on the host system. Override it to prevent potential contamination from the host.

export ...

While the above commands have set some variables, in order to make them visible within any sub-shells, we export them.

Important

Several commercial distributions add a non-documented instantiation of /etc/bash.bashrc to the initialization of bash. This file has the potential to modify the lfs user's environment in ways that can affect the building of critical LFS packages. To make sure the lfs user's environment is clean, check for the presence of /etc/bash.bashrc and, if present, move it out of the way. As the root user, run:

[ ! -e /etc/bash.bashrc ] || mv -v /etc/bash.bashrc /etc/bash.bashrc.NOUSE

After use of the lfs user is finished at the beginning of Chapter 7, you can restore /etc/bash.bashrc (if desired).

Note that the LFS Bash package we will build in Section 8.34, “Bash-5.1.16” is not configured to load or execute /etc/bash.bashrc, so this file is useless on a completed LFS system.

Finally, to have the environment fully prepared for building the temporary tools, source the just-created user profile:

source ~/.bash_profile

4.5. About SBUs

Many people would like to know beforehand approximately how long it takes to compile and install each package. Because Linux From Scratch can be built on many different systems, it is impossible to provide accurate time estimates. The biggest package (Glibc) will take approximately 20 minutes on the fastest systems, but could take up to three days on slower systems! Instead of providing actual times, the Standard Build Unit (SBU) measure will be used instead.

The SBU measure works as follows. The first package to be compiled from this book is binutils in Chapter 5. The time it takes to compile this package is what will be referred to as the Standard Build Unit or SBU. All other compile times will be expressed relative to this time.

For example, consider a package whose compilation time is 4.5 SBUs. This means that if a system took 10 minutes to compile and install the first pass of binutils, it will take approximately 45 minutes to build this example package. Fortunately, most build times are shorter than the one for binutils.

In general, SBUs are not entirely accurate because they depend on many factors, including the host system's version of GCC. They are provided here to give an estimate of how long it might take to install a package, but the numbers can vary by as much as dozens of minutes in some cases.

Note

For many modern systems with multiple processors (or cores) the compilation time for a package can be reduced by performing a "parallel make" by either setting an environment variable or telling the make program how many processors are available. For instance, an Intel i5-6500 CPU can support four simultaneous processes with:

export MAKEFLAGS='-j4'

or just building with:

make -j4

When multiple processors are used in this way, the SBU units in the book will vary even more than they normally would. In some cases, the make step will simply fail. Analyzing the output of the build process will also be more difficult because the lines of different processes will be interleaved. If you run into a problem with a build step, revert back to a single processor build to properly analyze the error messages.

4.6. About the Test Suites

Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can provide a sanity check indicating that everything compiled correctly. A test suite that passes its set of checks usually proves that the package is functioning as the developer intended. It does not, however, guarantee that the package is totally bug free.

Some test suites are more important than others. For example, the test suites for the core toolchain packages—GCC, binutils, and glibc—are of the utmost importance due to their central role in a properly functioning system. The test suites for GCC and glibc can take a very long time to complete, especially on slower hardware, but are strongly recommended.

Note

Running the test suites in Chapter 5 and Chapter 6 is impossible, since the programs are compiled with a cross-compiler, so are not supposed to be able to run on the build host.

A common issue with running the test suites for binutils and GCC is running out of pseudo terminals (PTYs). This can result in a high number of failing tests. This may happen for several reasons, but the most likely cause is that the host system does not have the devpts file system set up correctly. This issue is discussed in greater detail at https://www.linuxfromscratch.org/lfs/faq.html#no-ptys.

Sometimes package test suites will fail, but for reasons which the developers are aware of and have deemed non-critical. Consult the logs located at https://www.linuxfromscratch.org/lfs/build-logs/11.2/ to verify whether or not these failures are expected. This site is valid for all tests throughout this book.

Part III. Building the LFS Cross Toolchain and Temporary Tools

Important Preliminary Material

Introduction

This part is divided into three stages: first building a cross compiler and its associated libraries; second, use this cross toolchain to build several utilities in a way that isolates them from the host distribution; third, enter the chroot environment, which further improves host isolation, and build the remaining tools needed to build the final system.

Important

With this part begins the real work of building a new system. It requires much care in ensuring that the instructions are followed exactly as the book shows them. You should try to understand what they do, and whatever your eagerness to finish your build, you should refrain from blindly type them as shown, but rather read documentation when there is something you do not understand. Also, keep track of your typing and of the output of commands, by sending them to a file, using the tee utility. This allows for better diagnosing if something gets wrong.

The next section gives a technical introduction to the build process, while the following one contains very important general instructions.

Toolchain Technical Notes

This section explains some of the rationale and technical details behind the overall build method. It is not essential to immediately understand everything in this section. Most of this information will be clearer after performing an actual build. This section can be referred to at any time during the process.

The overall goal of Chapter 5 and Chapter 6 is to produce a temporary area that contains a known-good set of tools that can be isolated from the host system. By using chroot, the commands in the remaining chapters will be contained within that environment, ensuring a clean, trouble-free build of the target LFS system. The build process has been designed to minimize the risks for new readers and to provide the most educational value at the same time.

The build process is based on the process of cross-compilation. Cross-compilation is normally used for building a compiler and its toolchain for a machine different from the one that is used for the build. This is not strictly needed for LFS, since the machine where the new system will run is the same as the one used for the build. But cross-compilation has the great advantage that anything that is cross-compiled cannot depend on the host environment.

About Cross-Compilation

Note

The LFS book is not, and does not contain a general tutorial to build a cross (or native) toolchain. Don't use the command in the book for a cross toolchain which will be used for some purpose other than building LFS, unless you really understand what you are doing.

Cross-compilation involves some concepts that deserve a section on their own. Although this section may be omitted in a first reading, coming back to it later will be beneficial to your full understanding of the process.

Let us first define some terms used in this context:

build

is the machine where we build programs. Note that this machine is referred to as the host in other sections.

host

is the machine/system where the built programs will run. Note that this use of host is not the same as in other sections.

target

is only used for compilers. It is the machine the compiler produces code for. It may be different from both build and host.

As an example, let us imagine the following scenario (sometimes referred to as Canadian Cross): we may have a compiler on a slow machine only, let's call it machine A, and the compiler ccA. We may have also a fast machine (B), but with no compiler, and we may want to produce code for another slow machine (C). To build a compiler for machine C, we would have three stages:

Stage Build Host Target Action
1 A A B build cross-compiler cc1 using ccA on machine A
2 A B C build cross-compiler cc2 using cc1 on machine A
3 B C C build compiler ccC using cc2 on machine B

Then, all the other programs needed by machine C can be compiled using cc2 on the fast machine B. Note that unless B can run programs produced for C, there is no way to test the built programs until machine C itself is running. For example, for testing ccC, we may want to add a fourth stage:

Stage Build Host Target Action
4 C C C rebuild and test ccC using itself on machine C

In the example above, only cc1 and cc2 are cross-compilers, that is, they produce code for a machine different from the one they are run on. The other compilers ccA and ccC produce code for the machine they are run on. Such compilers are called native compilers.

Implementation of Cross-Compilation for LFS

Note

Almost all the build systems use names of the form cpu-vendor-kernel-os referred to as the machine triplet. An astute reader may wonder why a triplet refers to a four component name. The reason is history: initially, three component names were enough to designate a machine unambiguously, but with new machines and systems appearing, that proved insufficient. The word triplet remained. A simple way to determine your machine triplet is to run the config.guess script that comes with the source for many packages. Unpack the binutils sources and run the script: ./config.guess and note the output. For example, for a 32-bit Intel processor the output will be i686-pc-linux-gnu. On a 64-bit system it will be x86_64-pc-linux-gnu.

Also be aware of the name of the platform's dynamic linker, often referred to as the dynamic loader (not to be confused with the standard linker ld that is part of binutils). The dynamic linker provided by Glibc finds and loads the shared libraries needed by a program, prepares the program to run, and then runs it. The name of the dynamic linker for a 32-bit Intel machine is ld-linux.so.2 and is ld-linux-x86-64.so.2 for 64-bit systems. A sure-fire way to determine the name of the dynamic linker is to inspect a random binary from the host system by running: readelf -l <name of binary> | grep interpreter and noting the output. The authoritative reference covering all platforms is in the shlib-versions file in the root of the Glibc source tree.

In order to fake a cross compilation in LFS, the name of the host triplet is slightly adjusted by changing the "vendor" field in the LFS_TGT variable. We also use the --with-sysroot option when building the cross linker and cross compiler to tell them where to find the needed host files. This ensures that none of the other programs built in Chapter 6 can link to libraries on the build machine. Only two stages are mandatory, and one more for tests:

Stage Build Host Target Action
1 pc pc lfs build cross-compiler cc1 using cc-pc on pc
2 pc lfs lfs build compiler cc-lfs using cc1 on pc
3 lfs lfs lfs rebuild and test cc-lfs using itself on lfs

In the above table, on pc means the commands are run on a machine using the already installed distribution. On lfs means the commands are run in a chrooted environment.

Now, there is more about cross-compiling: the C language is not just a compiler, but also defines a standard library. In this book, the GNU C library, named glibc, is used. This library must be compiled for the lfs machine, that is, using the cross compiler cc1. But the compiler itself uses an internal library implementing complex instructions not available in the assembler instruction set. This internal library is named libgcc, and must be linked to the glibc library to be fully functional! Furthermore, the standard library for C++ (libstdc++) also needs being linked to glibc. The solution to this chicken and egg problem is to first build a degraded cc1 based libgcc, lacking some functionalities such as threads and exception handling, then build glibc using this degraded compiler (glibc itself is not degraded), then build libstdc++. But this last library will lack the same functionalities as libgcc.

This is not the end of the story: the conclusion of the preceding paragraph is that cc1 is unable to build a fully functional libstdc++, but this is the only compiler available for building the C/C++ libraries during stage 2! Of course, the compiler built during stage 2, cc-lfs, would be able to build those libraries, but (1) the build system of GCC does not know that it is usable on pc, and (2) using it on pc would be at risk of linking to the pc libraries, since cc-lfs is a native compiler. So we have to build libstdc++ later, in chroot.

Other procedural details

The cross-compiler will be installed in a separate $LFS/tools directory, since it will not be part of the final system.

Binutils is installed first because the configure runs of both GCC and Glibc perform various feature tests on the assembler and linker to determine which software features to enable or disable. This is more important than one might first realize. An incorrectly configured GCC or Glibc can result in a subtly broken toolchain, where the impact of such breakage might not show up until near the end of the build of an entire distribution. A test suite failure will usually highlight this error before too much additional work is performed.

Binutils installs its assembler and linker in two locations, $LFS/tools/bin and $LFS/tools/$LFS_TGT/bin. The tools in one location are hard linked to the other. An important facet of the linker is its library search order. Detailed information can be obtained from ld by passing it the --verbose flag. For example, $LFS_TGT-ld --verbose | grep SEARCH will illustrate the current search paths and their order. It shows which files are linked by ld by compiling a dummy program and passing the --verbose switch to the linker. For example, $LFS_TGT-gcc dummy.c -Wl,--verbose 2>&1 | grep succeeded will show all the files successfully opened during the linking.

The next package installed is GCC. An example of what can be seen during its run of configure is:

checking what assembler to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/as
checking what linker to use... /mnt/lfs/tools/i686-lfs-linux-gnu/bin/ld

This is important for the reasons mentioned above. It also demonstrates that GCC's configure script does not search the PATH directories to find which tools to use. However, during the actual operation of gcc itself, the same search paths are not necessarily used. To find out which standard linker gcc will use, run: $LFS_TGT-gcc -print-prog-name=ld.

Detailed information can be obtained from gcc by passing it the -v command line option while compiling a dummy program. For example, gcc -v dummy.c will show detailed information about the preprocessor, compilation, and assembly stages, including gcc's included search paths and their order.

Next installed are sanitized Linux API headers. These allow the standard C library (Glibc) to interface with features that the Linux kernel will provide.

The next package installed is Glibc. The most important considerations for building Glibc are the compiler, binary tools, and kernel headers. The compiler is generally not an issue since Glibc will always use the compiler relating to the --host parameter passed to its configure script; e.g. in our case, the compiler will be $LFS_TGT-gcc. The binary tools and kernel headers can be a bit more complicated. Therefore, we take no risks and use the available configure switches to enforce the correct selections. After the run of configure, check the contents of the config.make file in the build directory for all important details. Note the use of CC="$LFS_TGT-gcc" (with $LFS_TGT expanded) to control which binary tools are used and the use of the -nostdinc and -isystem flags to control the compiler's include search path. These items highlight an important aspect of the Glibc package—it is very self-sufficient in terms of its build machinery and generally does not rely on toolchain defaults.

As said above, the standard C++ library is compiled next, followed in Chapter 6 by all the programs that need themselves to be built. The install step of all those packages uses the DESTDIR variable to have the programs land into the LFS filesystem.

At the end of Chapter 6 the native lfs compiler is installed. First binutils-pass2 is built, with the same DESTDIR install as the other programs, then the second pass of GCC is constructed, omitting libstdc++ and other non-important libraries. Due to some weird logic in GCC's configure script, CC_FOR_TARGET ends up as cc when the host is the same as the target, but is different from the build system. This is why CC_FOR_TARGET=$LFS_TGT-gcc is put explicitly into the configure options.

Upon entering the chroot environment in Chapter 7, the first task is to install libstdc++. Then temporary installations of programs needed for the proper operation of the toolchain are performed. From this point onwards, the core toolchain is self-contained and self-hosted. In Chapter 8, final versions of all the packages needed for a fully functional system are built, tested and installed.

General Compilation Instructions

When building packages there are several assumptions made within the instructions:

  • Several of the packages are patched before compilation, but only when the patch is needed to circumvent a problem. A patch is often needed in both this and the following chapters, but sometimes in only one location. Therefore, do not be concerned if instructions for a downloaded patch seem to be missing. Warning messages about offset or fuzz may also be encountered when applying a patch. Do not worry about these warnings, as the patch was still successfully applied.

  • During the compilation of most packages, there will be several warnings that scroll by on the screen. These are normal and can safely be ignored. These warnings are as they appear—warnings about deprecated, but not invalid, use of the C or C++ syntax. C standards change fairly often, and some packages still use the older standard. This is not a problem, but does prompt the warning.

  • Check one last time that the LFS environment variable is set up properly:

    echo $LFS

    Make sure the output shows the path to the LFS partition's mount point, which is /mnt/lfs, using our example.

  • Finally, two important items must be emphasized:

    Important

    The build instructions assume that the Host System Requirements, including symbolic links, have been set properly:

    • bash is the shell in use.

    • sh is a symbolic link to bash.

    • /usr/bin/awk is a symbolic link to gawk.

    • /usr/bin/yacc is a symbolic link to bison or a small script that executes bison.

    Important

    To re-emphasize the build process:

    1. Place all the sources and patches in a directory that will be accessible from the chroot environment such as /mnt/lfs/sources/.

    2. Change to the sources directory.

    3. For each package:

      1. Using the tar program, extract the package to be built. In Chapter 5 and Chapter 6, ensure you are the lfs user when extracting the package.

        All methods to get the source code tree being built in-position, except extracting the package tarball, are not supported. Notably, using cp -R to copy the source code tree somewhere else can destroy links and timestamps in the sources tree and cause building failure.

      2. Change to the directory created when the package was extracted.

      3. Follow the book's instructions for building the package.

      4. Change back to the sources directory.

      5. Delete the extracted source directory unless instructed otherwise.

Chapter 5. Compiling a Cross-Toolchain

5.1. Introduction

This chapter shows how to build a cross-compiler and its associated tools. Although here cross-compilation is faked, the principles are the same as for a real cross-toolchain.

The programs compiled in this chapter will be installed under the $LFS/tools directory to keep them separate from the files installed in the following chapters. The libraries, on the other hand, are installed into their final place, since they pertain to the system we want to build.

5.2. Binutils-2.39 - Pass 1

The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1 SBU
Required disk space: 629 MB

5.2.1. Installation of Cross Binutils

Note

Go back and re-read the notes in the section titled General Compilation Instructions. Understanding the notes labeled important can save you a lot of problems later.

It is important that Binutils be the first package compiled because both Glibc and GCC perform various tests on the available linker and assembler to determine which of their own features to enable.

The Binutils documentation recommends building Binutils in a dedicated build directory:

mkdir -v build
cd       build

Note

In order for the SBU values listed in the rest of the book to be of any use, measure the time it takes to build this package from the configuration, up to and including the first install. To achieve this easily, wrap the commands in a time command like this: time { ../configure ... && make && make install; }.

Now prepare Binutils for compilation:

../configure --prefix=$LFS/tools \
             --with-sysroot=$LFS \
             --target=$LFS_TGT   \
             --disable-nls       \
             --enable-gprofng=no \
             --disable-werror

The meaning of the configure options:

--prefix=$LFS/tools

This tells the configure script to prepare to install the binutils programs in the $LFS/tools directory.

--with-sysroot=$LFS

For cross compilation, this tells the build system to look in $LFS for the target system libraries as needed.

--target=$LFS_TGT

Because the machine description in the LFS_TGT variable is slightly different than the value returned by the config.guess script, this switch will tell the configure script to adjust binutil's build system for building a cross linker.

--disable-nls

This disables internationalization as i18n is not needed for the temporary tools.

--enable-gprofng=no

This disables building gprofng which is not needed for the temporary tools.

--disable-werror

This prevents the build from stopping in the event that there are warnings from the host's compiler.

Continue with compiling the package:

make

Install the package:

make install

Details on this package are located in Section 8.18.2, “Contents of Binutils.”

5.3. GCC-12.2.0 - Pass 1

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 12 SBU
Required disk space: 3.8 GB

5.3.1. Installation of Cross GCC

GCC requires the GMP, MPFR and MPC packages. As these packages may not be included in your host distribution, they will be built with GCC. Unpack each package into the GCC source directory and rename the resulting directories so the GCC build procedures will automatically use them:

Note

There are frequent misunderstandings about this chapter. The procedures are the same as every other chapter as explained earlier (Package build instructions). First extract the gcc tarball from the sources directory and then change to the directory created. Only then should you proceed with the instructions below.

tar -xf ../mpfr-4.1.0.tar.xz
mv -v mpfr-4.1.0 mpfr
tar -xf ../gmp-6.2.1.tar.xz
mv -v gmp-6.2.1 gmp
tar -xf ../mpc-1.2.1.tar.gz
mv -v mpc-1.2.1 mpc

On x86_64 hosts, set the default directory name for 64-bit libraries to lib:

case $(uname -m) in
  x86_64)
    sed -e '/m64=/s/lib64/lib/' \
        -i.orig gcc/config/i386/t-linux64
 ;;
esac

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd       build

Prepare GCC for compilation:

../configure                  \
    --target=$LFS_TGT         \
    --prefix=$LFS/tools       \
    --with-glibc-version=2.36 \
    --with-sysroot=$LFS       \
    --with-newlib             \
    --without-headers         \
    --disable-nls             \
    --disable-shared          \
    --disable-multilib        \
    --disable-decimal-float   \
    --disable-threads         \
    --disable-libatomic       \
    --disable-libgomp         \
    --disable-libquadmath     \
    --disable-libssp          \
    --disable-libvtv          \
    --disable-libstdcxx       \
    --enable-languages=c,c++

The meaning of the configure options:

--with-glibc-version=2.36

This option specifies the version of glibc which will be used on the target. It is not relevant to the libc of the host distro because everything compiled by pass1 gcc will run in the chroot environment, which is isolated from libc of the host distro.

--with-newlib

Since a working C library is not yet available, this ensures that the inhibit_libc constant is defined when building libgcc. This prevents the compiling of any code that requires libc support.

--without-headers

When creating a complete cross-compiler, GCC requires standard headers compatible with the target system. For our purposes these headers will not be needed. This switch prevents GCC from looking for them.

--disable-shared

This switch forces GCC to link its internal libraries statically. We need this because the shared libraries require glibc, which is not yet installed on the target system.

--disable-multilib

On x86_64, LFS does not support a multilib configuration. This switch is harmless for x86.

--disable-decimal-float, --disable-threads, --disable-libatomic, --disable-libgomp, --disable-libquadmath, --disable-libssp, --disable-libvtv, --disable-libstdcxx

These switches disable support for the decimal floating point extension, threading, libatomic, libgomp, libquadmath, libssp, libvtv, and the C++ standard library respectively. These features will fail to compile when building a cross-compiler and are not necessary for the task of cross-compiling the temporary libc.

--enable-languages=c,c++

This option ensures that only the C and C++ compilers are built. These are the only languages needed now.

Compile GCC by running:

make

Install the package:

make install

This build of GCC has installed a couple of internal system headers. Normally one of them, limits.h, would in turn include the corresponding system limits.h header, in this case, $LFS/usr/include/limits.h. However, at the time of this build of GCC $LFS/usr/include/limits.h does not exist, so the internal header that has just been installed is a partial, self-contained file and does not include the extended features of the system header. This is adequate for building glibc, but the full internal header will be needed later. Create a full version of the internal header using a command that is identical to what the GCC build system does in normal circumstances:

cd ..
cat gcc/limitx.h gcc/glimits.h gcc/limity.h > \
  `dirname $($LFS_TGT-gcc -print-libgcc-file-name)`/install-tools/include/limits.h

Details on this package are located in Section 8.26.2, “Contents of GCC.”

5.4. Linux-5.19.2 API Headers

The Linux API Headers (in linux-5.19.2.tar.xz) expose the kernel's API for use by Glibc.

Approximate build time: 0.1 SBU
Required disk space: 1.4 GB

5.4.1. Installation of Linux API Headers

The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.

Make sure there are no stale files embedded in the package:

make mrproper

Now extract the user-visible kernel headers from the source. The recommended make target headers_install cannot be used, because it requires rsync, which may not be available. The headers are first placed in ./usr, then copied to the needed location.

make headers
find usr/include -type f ! -name '*.h' -delete
cp -rv usr/include $LFS/usr

5.4.2. Contents of Linux API Headers

Installed headers: /usr/include/asm/*.h, /usr/include/asm-generic/*.h, /usr/include/drm/*.h, /usr/include/linux/*.h, /usr/include/misc/*.h, /usr/include/mtd/*.h, /usr/include/rdma/*.h, /usr/include/scsi/*.h, /usr/include/sound/*.h, /usr/include/video/*.h, and /usr/include/xen/*.h
Installed directories: /usr/include/asm, /usr/include/asm-generic, /usr/include/drm, /usr/include/linux, /usr/include/misc, /usr/include/mtd, /usr/include/rdma, /usr/include/scsi, /usr/include/sound, /usr/include/video, and /usr/include/xen

Short Descriptions

/usr/include/asm/*.h

The Linux API ASM Headers

/usr/include/asm-generic/*.h

The Linux API ASM Generic Headers

/usr/include/drm/*.h

The Linux API DRM Headers

/usr/include/linux/*.h

The Linux API Linux Headers

/usr/include/misc/*.h

The Linux API Miscellaneous Headers

/usr/include/mtd/*.h

The Linux API MTD Headers

/usr/include/rdma/*.h

The Linux API RDMA Headers

/usr/include/scsi/*.h

The Linux API SCSI Headers

/usr/include/sound/*.h

The Linux API Sound Headers

/usr/include/video/*.h

The Linux API Video Headers

/usr/include/xen/*.h

The Linux API Xen Headers

5.5. Glibc-2.36

The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

Approximate build time: 4.4 SBU
Required disk space: 821 MB

5.5.1. Installation of Glibc

First, create a symbolic link for LSB compliance. Additionally, for x86_64, create a compatibility symbolic link required for proper operation of the dynamic library loader:

case $(uname -m) in
    i?86)   ln -sfv ld-linux.so.2 $LFS/lib/ld-lsb.so.3
    ;;
    x86_64) ln -sfv ../lib/ld-linux-x86-64.so.2 $LFS/lib64
            ln -sfv ../lib/ld-linux-x86-64.so.2 $LFS/lib64/ld-lsb-x86-64.so.3
    ;;
esac

Note

The above command is correct. The ln command has a few syntactic versions, so be sure to check info coreutils ln and ln(1) before reporting what you may think is an error.

Some of the Glibc programs use the non-FHS compliant /var/db directory to store their runtime data. Apply the following patch to make such programs store their runtime data in the FHS-compliant locations:

patch -Np1 -i ../glibc-2.36-fhs-1.patch

The Glibc documentation recommends building Glibc in a dedicated build directory:

mkdir -v build
cd       build

Ensure that the ldconfig and sln utilities are installed into /usr/sbin:

echo "rootsbindir=/usr/sbin" > configparms

Next, prepare Glibc for compilation:

../configure                             \
      --prefix=/usr                      \
      --host=$LFS_TGT                    \
      --build=$(../scripts/config.guess) \
      --enable-kernel=3.2                \
      --with-headers=$LFS/usr/include    \
      libc_cv_slibdir=/usr/lib

The meaning of the configure options:

--host=$LFS_TGT, --build=$(../scripts/config.guess)

The combined effect of these switches is that Glibc's build system configures itself to be cross-compiled, using the cross-linker and cross-compiler in $LFS/tools.

--enable-kernel=3.2

This tells Glibc to compile the library with support for 3.2 and later Linux kernels. Workarounds for older kernels are not enabled.

--with-headers=$LFS/usr/include

This tells Glibc to compile itself against the headers recently installed to the $LFS/usr/include directory, so that it knows exactly what features the kernel has and can optimize itself accordingly.

libc_cv_slibdir=/usr/lib

This ensures that the library is installed in /usr/lib instead of the default /lib64 on 64 bit machines.

During this stage the following warning might appear:

configure: WARNING:
*** These auxiliary programs are missing or
*** incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless. This msgfmt program is part of the Gettext package which the host distribution should provide.

Note

There have been reports that this package may fail when building as a "parallel make". If this occurs, rerun the make command with a "-j1" option.

Compile the package:

make

Install the package:

Warning

If LFS is not properly set, and despite the recommendations, you are building as root, the next command will install the newly built glibc to your host system, which most likely will render it unusable. So double check that the environment is correctly set, before running the following command.

make DESTDIR=$LFS install

The meaning of the make install option:

DESTDIR=$LFS

The DESTDIR make variable is used by almost all packages to define the location where the package should be installed. If it is not set, it defaults to the root (/) directory. Here we specify that the package be installed in $LFS , which will become the root after Section 7.4, “Entering the Chroot Environment”.

Fix hardcoded path to the executable loader in ldd script:

sed '/RTLDLIST=/s@/usr@@g' -i $LFS/usr/bin/ldd

Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new toolchain are working as expected. To perform a sanity check, run the following commands:

echo 'int main(){}' | gcc -xc -
readelf -l a.out | grep ld-linux

If everything is working correctly, there should be no errors, and the output of the last command will be of the form:

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

Note that for 32-bit machines, the interpreter name will be /lib/ld-linux.so.2.

If the output is not shown as above or there was no output at all, then something is wrong. Investigate and retrace the steps to find out where the problem is and correct it. This issue must be resolved before continuing on.

Once all is well, clean up the test file:

rm -v a.out

Note

Building packages in the next chapter will serve as an additional check that the toolchain has been built properly. If some package, especially binutils-pass2 or gcc-pass2, fails to build, it is an indication that something has gone wrong with the previous Binutils, GCC, or Glibc installations.

Now that our cross-toolchain is complete, finalize the installation of the limits.h header. For doing so, run a utility provided by the GCC developers:

$LFS/tools/libexec/gcc/$LFS_TGT/12.2.0/install-tools/mkheaders

Details on this package are located in Section 8.5.3, “Contents of Glibc.”

5.6. Libstdc++ from GCC-12.2.0

Libstdc++ is the standard C++ library. It is needed to compile C++ code (part of GCC is written in C++), but we had to defer its installation when we built gcc-pass1 because it depends on glibc, which was not yet available in the target directory.

Approximate build time: 0.4 SBU
Required disk space: 1.1 GB

5.6.1. Installation of Target Libstdc++

Note

Libstdc++ is part of the GCC sources. You should first unpack the GCC tarball and change to the gcc-12.2.0 directory.

Create a separate build directory for libstdc++ and enter it:

mkdir -v build
cd       build

Prepare libstdc++ for compilation:

../libstdc++-v3/configure           \
    --host=$LFS_TGT                 \
    --build=$(../config.guess)      \
    --prefix=/usr                   \
    --disable-multilib              \
    --disable-nls                   \
    --disable-libstdcxx-pch         \
    --with-gxx-include-dir=/tools/$LFS_TGT/include/c++/12.2.0

The meaning of the configure options:

--host=...

Specifies that the cross compiler we have just built should be used instead of the one in /usr/bin.

--disable-libstdcxx-pch

This switch prevents the installation of precompiled include files, which are not needed at this stage.

--with-gxx-include-dir=/tools/$LFS_TGT/include/c++/12.2.0

This specifies the installation directory for include files. Because libstdc++ is the standard C++ library for LFS, this directory should match the location where the C++ compiler ($LFS_TGT-g++) would search for the standard C++ include files. In a normal build, this information is automatically passed to the libstdc++ configure options from the top level directory. In our case, this information must be explicitly given. The C++ compiler will prepend the sysroot path $LFS (specified building GCC pass 1) to the include file search path, so it will actually search in $LFS/tools/$LFS_TGT/include/c++/12.2.0. The combination of the DESTDIR variable (in the make install command below) and this switch ensures to install the headers there.

Compile libstdc++ by running:

make

Install the library:

make DESTDIR=$LFS install

Remove the libtool archive files because they are harmful for cross compilation:

rm -v $LFS/usr/lib/lib{stdc++,stdc++fs,supc++}.la

Details on this package are located in Section 8.26.2, “Contents of GCC.”

Chapter 6. Cross Compiling Temporary Tools

6.1. Introduction

This chapter shows how to cross-compile basic utilities using the just built cross-toolchain. Those utilities are installed into their final location, but cannot be used yet. Basic tasks still rely on the host's tools. Nevertheless, the installed libraries are used when linking.

Using the utilities will be possible in next chapter after entering the chroot environment. But all the packages built in the present chapter need to be built before we do that. Therefore we cannot be independent of the host system yet.

Once again, let us recall that improper setting of LFS together with building as root, may render your computer unusable. This whole chapter must be done as user lfs, with the environment as described in Section 4.4, “Setting Up the Environment”.

6.2. M4-1.4.19

The M4 package contains a macro processor.

Approximate build time: 0.2 SBU
Required disk space: 32 MB

6.2.1. Installation of M4

Prepare M4 for compilation:

./configure --prefix=/usr   \
            --host=$LFS_TGT \
            --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.12.2, “Contents of M4.”

6.3. Ncurses-6.3

The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.7 SBU
Required disk space: 50 MB

6.3.1. Installation of Ncurses

First, ensure that gawk is found first during configuration:

sed -i s/mawk// configure

Then, run the following commands to build the tic program on the build host:

mkdir build
pushd build
  ../configure
  make -C include
  make -C progs tic
popd

Prepare Ncurses for compilation:

./configure --prefix=/usr                \
            --host=$LFS_TGT              \
            --build=$(./config.guess)    \
            --mandir=/usr/share/man      \
            --with-manpage-format=normal \
            --with-shared                \
            --without-normal             \
            --with-cxx-shared            \
            --without-debug              \
            --without-ada                \
            --disable-stripping          \
            --enable-widec

The meaning of the new configure options:

--with-manpage-format=normal

This prevents Ncurses installing compressed manual pages, which may happen if the host distribution itself has compressed manual pages.

--with-shared

This makes Ncurses build and install shared C libraries.

--without-normal

This prevents Ncurses building and installing static C libraries.

--without-debug

This prevents Ncurses building and installing debug libraries.

--with-cxx-shared

This makes Ncurses build and install shared C++ bindings. It also prevents it building and installing static C++ bindings.

--without-ada

This ensures that Ncurses does not build support for the Ada compiler which may be present on the host but will not be available once we enter the chroot environment.

--disable-stripping

This switch prevents the building system from stripping the programs using strip program from the host. Using host tools on cross-compiled program can cause failure.

--enable-widec

This switch causes wide-character libraries (e.g., libncursesw.so.6.3) to be built instead of normal ones (e.g., libncurses.so.6.3). These wide-character libraries are usable in both multibyte and traditional 8-bit locales, while normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are source-compatible, but not binary-compatible.

Compile the package:

make

Install the package:

make DESTDIR=$LFS TIC_PATH=$(pwd)/build/progs/tic install
echo "INPUT(-lncursesw)" > $LFS/usr/lib/libncurses.so

The meaning of the install options:

TIC_PATH=$(pwd)/build/progs/tic

We need to pass the path of the just built tic able to run on the building machine, so that the terminal database can be created without errors.

echo "INPUT(-lncursesw)" > $LFS/usr/lib/libncurses.so

The libncurses.so library is needed by a few packages we will build soon. We create this small linker script, as this is what is done in Chapter 8.

Details on this package are located in Section 8.28.2, “Contents of Ncurses.”

6.4. Bash-5.1.16

The Bash package contains the Bourne-Again SHell.

Approximate build time: 0.5 SBU
Required disk space: 64 MB

6.4.1. Installation of Bash

Prepare Bash for compilation:

./configure --prefix=/usr                   \
            --build=$(support/config.guess) \
            --host=$LFS_TGT                 \
            --without-bash-malloc

The meaning of the configure options:

--without-bash-malloc

This option turns off the use of Bash's memory allocation (malloc) function which is known to cause segmentation faults. By turning this option off, Bash will use the malloc functions from Glibc which are more stable.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Make a link for the programs that use sh for a shell:

ln -sv bash $LFS/bin/sh

Details on this package are located in Section 8.34.2, “Contents of Bash.”

6.5. Coreutils-9.1

The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 0.6 SBU
Required disk space: 163 MB

6.5.1. Installation of Coreutils

Prepare Coreutils for compilation:

./configure --prefix=/usr                     \
            --host=$LFS_TGT                   \
            --build=$(build-aux/config.guess) \
            --enable-install-program=hostname \
            --enable-no-install-program=kill,uptime

The meaning of the configure options:

--enable-install-program=hostname

This enables the hostname binary to be built and installed – it is disabled by default but is required by the Perl test suite.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Move programs to their final expected locations. Although this is not necessary in this temporary environment, we must do so because some programs hardcode executable locations:

mv -v $LFS/usr/bin/chroot              $LFS/usr/sbin
mkdir -pv $LFS/usr/share/man/man8
mv -v $LFS/usr/share/man/man1/chroot.1 $LFS/usr/share/man/man8/chroot.8
sed -i 's/"1"/"8"/'                    $LFS/usr/share/man/man8/chroot.8

Details on this package are located in Section 8.54.2, “Contents of Coreutils.”

6.6. Diffutils-3.8

The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.2 SBU
Required disk space: 26 MB

6.6.1. Installation of Diffutils

Prepare Diffutils for compilation:

./configure --prefix=/usr --host=$LFS_TGT

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.56.2, “Contents of Diffutils.”

6.7. File-5.42

The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.2 SBU
Required disk space: 34 MB

6.7.1. Installation of File

The file command on the build host needs to be same version as the one we are building in order to create the signature file. Run the following commands to build it:

mkdir build
pushd build
  ../configure --disable-bzlib      \
               --disable-libseccomp \
               --disable-xzlib      \
               --disable-zlib
  make
popd

The meaning of the new configure option:

--disable-*

The configuration script attempts to use some packages from the host distribution if the corresponding library files exist. It may cause compilation failure if a library file exists, but the corresponding header files do not. These options prevent using these unneeded capabilities from the host.

Prepare File for compilation:

./configure --prefix=/usr --host=$LFS_TGT --build=$(./config.guess)

Compile the package:

make FILE_COMPILE=$(pwd)/build/src/file

Install the package:

make DESTDIR=$LFS install

Remove the libtool archive file because it is harmful for cross compilation:

rm -v $LFS/usr/lib/libmagic.la

Details on this package are located in Section 8.10.2, “Contents of File.”

6.8. Findutils-4.9.0

The Findutils package contains programs to find files. These programs are provided to recursively search through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but is unreliable if the database has not been recently updated).

Approximate build time: 0.2 SBU
Required disk space: 42 MB

6.8.1. Installation of Findutils

Prepare Findutils for compilation:

./configure --prefix=/usr                   \
            --localstatedir=/var/lib/locate \
            --host=$LFS_TGT                 \
            --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.58.2, “Contents of Findutils.”

6.9. Gawk-5.1.1

The Gawk package contains programs for manipulating text files.

Approximate build time: 0.2 SBU
Required disk space: 45 MB

6.9.1. Installation of Gawk

First, ensure some unneeded files are not installed:

sed -i 's/extras//' Makefile.in

Prepare Gawk for compilation:

./configure --prefix=/usr   \
            --host=$LFS_TGT \
            --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.57.2, “Contents of Gawk.”

6.10. Grep-3.7

The Grep package contains programs for searching through the contents of files.

Approximate build time: 0.2 SBU
Required disk space: 25 MB

6.10.1. Installation of Grep

Prepare Grep for compilation:

./configure --prefix=/usr   \
            --host=$LFS_TGT

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.33.2, “Contents of Grep.”

6.11. Gzip-1.12

The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.1 SBU
Required disk space: 11 MB

6.11.1. Installation of Gzip

Prepare Gzip for compilation:

./configure --prefix=/usr --host=$LFS_TGT

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.61.2, “Contents of Gzip.”

6.12. Make-4.3

The Make package contains a program for controlling the generation of executables and other non-source files of a package from source files.

Approximate build time: 0.1 SBU
Required disk space: 15 MB

6.12.1. Installation of Make

Prepare Make for compilation:

./configure --prefix=/usr   \
            --without-guile \
            --host=$LFS_TGT \
            --build=$(build-aux/config.guess)

The meaning of the new configure option:

--without-guile

Although we are cross-compiling, configure tries to use guile from the build host if it finds it. This makes compilation fail, so this switch prevents using it.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.65.2, “Contents of Make.”

6.13. Patch-2.7.6

The Patch package contains a program for modifying or creating files by applying a patch file typically created by the diff program.

Approximate build time: 0.1 SBU
Required disk space: 12 MB

6.13.1. Installation of Patch

Prepare Patch for compilation:

./configure --prefix=/usr   \
            --host=$LFS_TGT \
            --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.66.2, “Contents of Patch.”

6.14. Sed-4.8

The Sed package contains a stream editor.

Approximate build time: 0.1 SBU
Required disk space: 20 MB

6.14.1. Installation of Sed

Prepare Sed for compilation:

./configure --prefix=/usr   \
            --host=$LFS_TGT

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.29.2, “Contents of Sed.”

6.15. Tar-1.34

The Tar package provides the ability to create tar archives as well as perform various other kinds of archive manipulation. Tar can be used on previously created archives to extract files, to store additional files, or to update or list files which were already stored.

Approximate build time: 0.2 SBU
Required disk space: 38 MB

6.15.1. Installation of Tar

Prepare Tar for compilation:

./configure --prefix=/usr                     \
            --host=$LFS_TGT                   \
            --build=$(build-aux/config.guess)

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Details on this package are located in Section 8.67.2, “Contents of Tar.”

6.16. Xz-5.2.6

The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with the traditional gzip or bzip2 commands.

Approximate build time: 0.1 SBU
Required disk space: 16 MB

6.16.1. Installation of Xz

Prepare Xz for compilation:

./configure --prefix=/usr                     \
            --host=$LFS_TGT                   \
            --build=$(build-aux/config.guess) \
            --disable-static                  \
            --docdir=/usr/share/doc/xz-5.2.6

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Remove the libtool archive file because it is harmful for cross compilation:

rm -v $LFS/usr/lib/liblzma.la

Details on this package are located in Section 8.8.2, “Contents of Xz.”

6.17. Binutils-2.39 - Pass 2

The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1.4 SBU
Required disk space: 514 MB

6.17.1. Installation of Binutils

Binutils ships an outdated libtool copy in the tarball. It lacks sysroot support so the produced binaries will be mistakenly linked to libraries from the host distro. Workaround this issue:

sed '6009s/$add_dir//' -i ltmain.sh

Create a separate build directory again:

mkdir -v build
cd       build

Prepare Binutils for compilation:

../configure                   \
    --prefix=/usr              \
    --build=$(../config.guess) \
    --host=$LFS_TGT            \
    --disable-nls              \
    --enable-shared            \
    --enable-gprofng=no        \
    --disable-werror           \
    --enable-64-bit-bfd

The meaning of the new configure options:

--enable-shared

Builds libbfd as a shared library.

--enable-64-bit-bfd

Enables 64-bit support (on hosts with narrower word sizes). May not be needed on 64-bit systems, but does no harm.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

Remove the libtool archive files because they are harmful for cross compilation, and remove unnecessary static libraries:

rm -v $LFS/usr/lib/lib{bfd,ctf,ctf-nobfd,opcodes}.{a,la}

Details on this package are located in Section 8.18.2, “Contents of Binutils.”

6.18. GCC-12.2.0 - Pass 2

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 15 SBU
Required disk space: 4.5 GB

6.18.1. Installation of GCC

As in the first build of GCC, the GMP, MPFR, and MPC packages are required. Unpack the tarballs and move them into the required directory names:

tar -xf ../mpfr-4.1.0.tar.xz
mv -v mpfr-4.1.0 mpfr
tar -xf ../gmp-6.2.1.tar.xz
mv -v gmp-6.2.1 gmp
tar -xf ../mpc-1.2.1.tar.gz
mv -v mpc-1.2.1 mpc

If building on x86_64, change the default directory name for 64-bit libraries to lib:

case $(uname -m) in
  x86_64)
    sed -e '/m64=/s/lib64/lib/' -i.orig gcc/config/i386/t-linux64
  ;;
esac

Override the building rule of libgcc and libstdc++ headers, to allow building these libraries with POSIX threads support:

sed '/thread_header =/s/@.*@/gthr-posix.h/' \
    -i libgcc/Makefile.in libstdc++-v3/include/Makefile.in

Create a separate build directory again:

mkdir -v build
cd       build

Before starting to build GCC, remember to unset any environment variables that override the default optimization flags.

Now prepare GCC for compilation:

../configure                                       \
    --build=$(../config.guess)                     \
    --host=$LFS_TGT                                \
    --target=$LFS_TGT                              \
    LDFLAGS_FOR_TARGET=-L$PWD/$LFS_TGT/libgcc      \
    --prefix=/usr                                  \
    --with-build-sysroot=$LFS                      \
    --enable-initfini-array                        \
    --disable-nls                                  \
    --disable-multilib                             \
    --disable-decimal-float                        \
    --disable-libatomic                            \
    --disable-libgomp                              \
    --disable-libquadmath                          \
    --disable-libssp                               \
    --disable-libvtv                               \
    --enable-languages=c,c++

The meaning of the new configure options:

--with-build-sysroot=$LFS

Normally, using --host ensures that a cross-compiler is used for building GCC, and that compiler knows that it has to look for headers and libraries in $LFS. But the build system of GCC uses other tools, which are not aware of this location. This switch is needed to have them find the needed files in $LFS, and not on the host.

--target=$LFS_TGT

As we are cross-compiling GCC, it's impossible to build target libraries (libgcc and libstdc++) with the compiled GCC binaries because these binaries won't run on the host distro. GCC building system will attempt to use the C and C++ compilers on the host distro as a workaround by default. It's not supported to build GCC target libraries with a different version of GCC, so using host compilers may cause building failure. This parameter ensures to build the libraries with GCC pass 1 and prevent the issue.

LDFLAGS_FOR_TARGET=...

Allow libstdc++ to use shared libgcc being built in this pass, instead of the static version built in GCC pass 1. This is needed for supporting C++ exception handling.

--enable-initfini-array

This option is automatically enabled when building a native compiler with a native compiler on x86. But here, we build with a cross compiler, so we need to explicitly set this option.

Compile the package:

make

Install the package:

make DESTDIR=$LFS install

As a finishing touch, create a utility symlink. Many programs and scripts run cc instead of gcc, which is used to keep programs generic and therefore usable on all kinds of UNIX systems where the GNU C compiler is not always installed. Running cc leaves the system administrator free to decide which C compiler to install:

ln -sv gcc $LFS/usr/bin/cc

Details on this package are located in Section 8.26.2, “Contents of GCC.”

Chapter 7. Entering Chroot and Building Additional Temporary Tools

7.1. Introduction

This chapter shows how to build the last missing bits of the temporary system: the tools needed by the build machinery of various packages. Now that all circular dependencies have been resolved, a chroot environment, completely isolated from the host operating system (except for the running kernel), can be used for the build.

For proper operation of the isolated environment, some communication with the running kernel must be established. This is done through the so-called Virtual Kernel File Systems, which must be mounted when entering the chroot environment. You may want to check that they are mounted by issuing findmnt.

Until Section 7.4, “Entering the Chroot Environment”, the commands must be run as root, with the LFS variable set. After entering chroot, all commands are run as root, fortunately without access to the OS of the computer you built LFS on. Be careful anyway, as it is easy to destroy the whole LFS system with badly formed commands.

7.2. Changing Ownership

Note

The commands in the remainder of this book must be performed while logged in as user root and no longer as user lfs. Also, double check that $LFS is set in root's environment.

Currently, the whole directory hierarchy in $LFS is owned by the user lfs, a user that exists only on the host system. If the directories and files under $LFS are kept as they are, they will be owned by a user ID without a corresponding account. This is dangerous because a user account created later could get this same user ID and would own all the files under $LFS, thus exposing these files to possible malicious manipulation.

To address this issue, change the ownership of the $LFS/* directories to user root by running the following command:

chown -R root:root $LFS/{usr,lib,var,etc,bin,sbin,tools}
case $(uname -m) in
  x86_64) chown -R root:root $LFS/lib64 ;;
esac

7.3. Preparing Virtual Kernel File Systems

Various file systems exported by the kernel are used to communicate to and from the kernel itself. These file systems are virtual in that no disk space is used for them. The content of the file systems resides in memory.

Begin by creating directories onto which the file systems will be mounted:

mkdir -pv $LFS/{dev,proc,sys,run}

7.3.1. Mounting and Populating /dev

During a normal boot, the kernel automatically mounts the devtmpfs filesystem on the /dev directory, and allow the devices to be created dynamically on that virtual filesystem as they are detected or accessed. Device creation is generally done during the boot process by the kernel and Udev. Since this new system does not yet have Udev and has not yet been booted, it is necessary to mount and populate /dev manually. This is accomplished by bind mounting the host system's /dev directory. A bind mount is a special type of mount that allows you to create a mirror of a directory or mount point to some other location. Use the following command to achieve this:

mount -v --bind /dev $LFS/dev

7.3.2. Mounting Virtual Kernel File Systems

Now mount the remaining virtual kernel filesystems:

mount -v --bind /dev/pts $LFS/dev/pts
mount -vt proc proc $LFS/proc
mount -vt sysfs sysfs $LFS/sys
mount -vt tmpfs tmpfs $LFS/run

In some host systems, /dev/shm is a symbolic link to /run/shm. The /run tmpfs was mounted above so in this case only a directory needs to be created.

if [ -h $LFS/dev/shm ]; then
  mkdir -pv $LFS/$(readlink $LFS/dev/shm)
fi

7.4. Entering the Chroot Environment

Now that all the packages which are required to build the rest of the needed tools are on the system, it is time to enter the chroot environment to finish installing the remaining temporary tools. This environment will be in use also for installing the final system. As user root, run the following command to enter the environment that is, at the moment, populated with only the temporary tools:

chroot "$LFS" /usr/bin/env -i   \
    HOME=/root                  \
    TERM="$TERM"                \
    PS1='(lfs chroot) \u:\w\$ ' \
    PATH=/usr/bin:/usr/sbin     \
    /bin/bash --login

The -i option given to the env command will clear all variables of the chroot environment. After that, only the HOME, TERM, PS1, and PATH variables are set again. The TERM=$TERM construct will set the TERM variable inside chroot to the same value as outside chroot. This variable is needed for programs like vim and less to operate properly. If other variables are desired, such as CFLAGS or CXXFLAGS, this is a good place to set them again.

From this point on, there is no need to use the LFS variable anymore because all work will be restricted to the LFS file system. This is because the Bash shell is told that $LFS is now the root (/) directory.

Notice that /tools/bin is not in the PATH. This means that the cross toolchain will no longer be used in the chroot environment.

Note that the bash prompt will say I have no name! This is normal because the /etc/passwd file has not been created yet.

Note

It is important that all the commands throughout the remainder of this chapter and the following chapters are run from within the chroot environment. If you leave this environment for any reason (rebooting for example), ensure that the virtual kernel filesystems are mounted as explained in Section 7.3.1, “Mounting and Populating /dev” and Section 7.3.2, “Mounting Virtual Kernel File Systems” and enter chroot again before continuing with the installation.

7.5. Creating Directories

It is time to create the full structure in the LFS file system.

Note

Some of the directories mentioned in this section may be already created earlier with explicit instructions or when installing some packages. They are repeated below for completeness.

Create some root-level directories that are not in the limited set required in the previous chapters by issuing the following command:

mkdir -pv /{boot,home,mnt,opt,srv}

Create the required set of subdirectories below the root-level by issuing the following commands:

mkdir -pv /etc/{opt,sysconfig}
mkdir -pv /lib/firmware
mkdir -pv /media/{floppy,cdrom}
mkdir -pv /usr/{,local/}{include,src}
mkdir -pv /usr/local/{bin,lib,sbin}
mkdir -pv /usr/{,local/}share/{color,dict,doc,info,locale,man}
mkdir -pv /usr/{,local/}share/{misc,terminfo,zoneinfo}
mkdir -pv /usr/{,local/}share/man/man{1..8}
mkdir -pv /var/{cache,local,log,mail,opt,spool}
mkdir -pv /var/lib/{color,misc,locate}

ln -sfv /run /var/run
ln -sfv /run/lock /var/lock

install -dv -m 0750 /root
install -dv -m 1777 /tmp /var/tmp

Directories are, by default, created with permission mode 755, but this is not desirable for all directories. In the commands above, two changes are made—one to the home directory of user root, and another to the directories for temporary files.

The first mode change ensures that not just anybody can enter the /root directory—the same as a normal user would do with his or her home directory. The second mode change makes sure that any user can write to the /tmp and /var/tmp directories, but cannot remove another user's files from them. The latter is prohibited by the so-called sticky bit, the highest bit (1) in the 1777 bit mask.

7.5.1. FHS Compliance Note

The directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at https://refspecs.linuxfoundation.org/fhs.shtml). The FHS also specifies the optional existence of some directories such as /usr/local/games and /usr/share/games. We create only the directories that are needed. However, feel free to create these directories.

7.6. Creating Essential Files and Symlinks

Historically, Linux maintains a list of the mounted file systems in the file /etc/mtab. Modern kernels maintain this list internally and expose it to the user via the /proc filesystem. To satisfy utilities that expect the presence of /etc/mtab, create the following symbolic link:

ln -sv /proc/self/mounts /etc/mtab

Create a basic /etc/hosts file to be referenced in some test suites, and in one of Perl's configuration files as well:

cat > /etc/hosts << EOF
127.0.0.1  localhost $(hostname)
::1        localhost
EOF

In order for user root to be able to login and for the name root to be recognized, there must be relevant entries in the /etc/passwd and /etc/group files.

Create the /etc/passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/dev/null:/usr/bin/false
daemon:x:6:6:Daemon User:/dev/null:/usr/bin/false
messagebus:x:18:18:D-Bus Message Daemon User:/run/dbus:/usr/bin/false
uuidd:x:80:80:UUID Generation Daemon User:/dev/null:/usr/bin/false
nobody:x:65534:65534:Unprivileged User:/dev/null:/usr/bin/false
EOF

The actual password for root will be set later.

Create the /etc/group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:daemon
sys:x:2:
kmem:x:3:
tape:x:4:
tty:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
adm:x:16:
messagebus:x:18:
input:x:24:
mail:x:34:
kvm:x:61:
uuidd:x:80:
wheel:x:97:
users:x:999:
nogroup:x:65534:
EOF

The created groups are not part of any standard—they are groups decided on in part by the requirements of the Udev configuration in Chapter 9, and in part by common convention employed by a number of existing Linux distributions. In addition, some test suites rely on specific users or groups. The Linux Standard Base (LSB, available at http://refspecs.linuxfoundation.org/lsb.shtml) only recommends that, besides the group root with a Group ID (GID) of 0, a group bin with a GID of 1 be present. The GID of 5 is widely used for tty group, and the number 5 is also used in /etc/fstab for the devpts filesystem. All other group names and GIDs can be chosen freely by the system administrator since well-written programs do not depend on GID numbers, but rather use the group's name.

The ID 65534 is used by the kernel for NFS and separate user namespaces for unmapped users and groups (those exist on the NFS server or the parent user namespace, but do not exist on the local machine or in the separate namespace). We assign nobody and nogroup for it to avoid an unnamed ID. But other distros may treat this ID differently, so any portable program should not depend on this assignment.

Some tests in Chapter 8 need a regular user. We add this user here and delete this account at the end of that chapter.

echo "tester:x:101:101::/home/tester:/bin/bash" >> /etc/passwd
echo "tester:x:101:" >> /etc/group
install -o tester -d /home/tester

To remove the I have no name! prompt, start a new shell. Since the /etc/passwd and /etc/group files have been created, user name and group name resolution will now work:

exec /usr/bin/bash --login

The login, agetty, and init programs (and others) use a number of log files to record information such as who was logged into the system and when. However, these programs will not write to the log files if they do not already exist. Initialize the log files and give them proper permissions:

touch /var/log/{btmp,lastlog,faillog,wtmp}
chgrp -v utmp /var/log/lastlog
chmod -v 664  /var/log/lastlog
chmod -v 600  /var/log/btmp

The /var/log/wtmp file records all logins and logouts. The /var/log/lastlog file records when each user last logged in. The /var/log/faillog file records failed login attempts. The /var/log/btmp file records the bad login attempts.

Note

The /run/utmp file records the users that are currently logged in. This file is created dynamically in the boot scripts.

7.7. Gettext-0.21

The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 1.6 SBU
Required disk space: 282 MB

7.7.1. Installation of Gettext

For our temporary set of tools, we only need to install three programs from Gettext.

Prepare Gettext for compilation:

./configure --disable-shared

The meaning of the configure option:

--disable-shared

We do not need to install any of the shared Gettext libraries at this time, therefore there is no need to build them.

Compile the package:

make

Install the msgfmt, msgmerge, and xgettext programs:

cp -v gettext-tools/src/{msgfmt,msgmerge,xgettext} /usr/bin

Details on this package are located in Section 8.31.2, “Contents of Gettext.”

7.8. Bison-3.8.2

The Bison package contains a parser generator.

Approximate build time: 0.3 SBU
Required disk space: 57 MB

7.8.1. Installation of Bison

Prepare Bison for compilation:

./configure --prefix=/usr \
            --docdir=/usr/share/doc/bison-3.8.2

The meaning of the new configure option:

--docdir=/usr/share/doc/bison-3.8.2

This tells the build system to install bison documentation into a versioned directory.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.32.2, “Contents of Bison.”

7.9. Perl-5.36.0

The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 1.6 SBU
Required disk space: 282 MB

7.9.1. Installation of Perl

Prepare Perl for compilation:

sh Configure -des                                        \
             -Dprefix=/usr                               \
             -Dvendorprefix=/usr                         \
             -Dprivlib=/usr/lib/perl5/5.36/core_perl     \
             -Darchlib=/usr/lib/perl5/5.36/core_perl     \
             -Dsitelib=/usr/lib/perl5/5.36/site_perl     \
             -Dsitearch=/usr/lib/perl5/5.36/site_perl    \
             -Dvendorlib=/usr/lib/perl5/5.36/vendor_perl \
             -Dvendorarch=/usr/lib/perl5/5.36/vendor_perl

The meaning of the new Configure options:

-des

This is a combination of three options: -d uses defaults for all items; -e ensures completion of all tasks; -s silences non-essential output.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.41.2, “Contents of Perl.”

7.10. Python-3.10.6

The Python 3 package contains the Python development environment. It is useful for object-oriented programming, writing scripts, prototyping large programs, or developing entire applications.

Approximate build time: 0.9 SBU
Required disk space: 364 MB

7.10.1. Installation of Python

Note

There are two package files whose name starts with python. The one to extract from is Python-3.10.6.tar.xz (notice the uppercase first letter).

Prepare Python for compilation:

./configure --prefix=/usr   \
            --enable-shared \
            --without-ensurepip

The meaning of the configure option:

--enable-shared

This switch prevents installation of static libraries.

--without-ensurepip

This switch disables the Python package installer, which is not needed at this stage.

Compile the package:

make

Note

Some Python 3 modules can't be built now because the dependencies are not installed yet. The building system still attempts to build them however, so the compilation of some files will fail and the compiler message may seem to indicate fatal error. The message should be ignored. Just make sure the toplevel make command has not failed. The optional modules are not needed now and they will be built in Chapter 8.

Install the package:

make install

Details on this package are located in Section 8.50.2, “Contents of Python 3.”

7.11. Texinfo-6.8

The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.2 SBU
Required disk space: 113 MB

7.11.1. Installation of Texinfo

Prepare Texinfo for compilation:

./configure --prefix=/usr

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.68.2, “Contents of Texinfo.”

7.12. Util-linux-2.38.1

The Util-linux package contains miscellaneous utility programs.

Approximate build time: 0.6 SBU
Required disk space: 149 MB

7.12.1. Installation of Util-linux

The FHS recommends using the /var/lib/hwclock directory instead of the usual /etc directory as the location for the adjtime file. Create this directory with:

mkdir -pv /var/lib/hwclock

Prepare Util-linux for compilation:

./configure ADJTIME_PATH=/var/lib/hwclock/adjtime    \
            --libdir=/usr/lib    \
            --docdir=/usr/share/doc/util-linux-2.38.1 \
            --disable-chfn-chsh  \
            --disable-login      \
            --disable-nologin    \
            --disable-su         \
            --disable-setpriv    \
            --disable-runuser    \
            --disable-pylibmount \
            --disable-static     \
            --without-python     \
            runstatedir=/run

The meaning of the configure options:

ADJTIME_PATH=/var/lib/hwclock/adjtime

This sets the location of the file recording information about the hardware clock in accordance to the FHS. This is not strictly needed for this temporary tool, but it prevents creating a file at another location, which would not be overwritten or removed when building the final util-linux package.

--libdir=/usr/lib

This switch ensures the .so symlinks targeting the shared library file in the same directory (/usr/lib) directly.

--disable-*

These switches prevent warnings about building components that require packages not in LFS or not installed yet.

--without-python

This switch disables using Python. It avoids trying to build unneeded bindings.

runstatedir=/run

This switch sets the location of the socket used by uuidd and libuuid correctly.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 8.73.2, “Contents of Util-linux.”

7.13. Cleaning up and Saving the Temporary System

7.13.1. Cleaning

First, remove the currently installed documentation to prevent them from ending up in the final system, and to save about 35 MB:

rm -rf /usr/share/{info,man,doc}/*

Second, the libtool .la files are only useful when linking with static libraries. They are unneeded and potentially harmful when using dynamic shared libraries, especially when using non-autotools build systems. While still in chroot, remove those files now:

find /usr/{lib,libexec} -name \*.la -delete

The current system size is now about 3 GB, however the /tools directory is no longer needed. It uses about 1 GB of disk space. Delete it now:

rm -rf /tools

7.13.2. Backup

At this point the essential programs and libraries have been created and your current LFS system is in a good state. Your system can now be backed up for later reuse. In case of fatal failures in the subsequent chapters, it often turns out that removing everything and starting over (more carefully) is the best option to recover. Unfortunately, all the temporary files will be removed, too. To avoid spending extra time to redo something which has been built successfully, creating a backup of the current LFS system may prove useful.

Note

All the remaining steps in this section are optional. Nevertheless, as soon as you begin installing packages in Chapter 8, the temporary files will be overwritten. So it may be a good idea to do a backup of the current system as described below.

The following steps are performed from outside the chroot environment. That means, you have to leave the chroot environment first before continuing. The reason for that is to get access to file system locations outside of the chroot environment to store/read the backup archive which should not be placed within the $LFS hierarchy for safety reasons.

If you have decided to make a backup, leave the chroot environment:

exit

Important

All of the following instructions are executed by root on your host system. Take extra care about the commands you're going to run as mistakes here can modify your host system. Be aware that the environment variable LFS is set for user lfs by default but may not be set for root.

Whenever commands are to be executed by root, make sure you have set LFS.

This has been discussed in Section 2.6, “Setting The $LFS Variable”.

Before making a backup, unmount the virtual file systems:

umount $LFS/dev/pts
umount $LFS/{sys,proc,run,dev}

Make sure you have at least 1 GB free disk space (the source tarballs will be included in the backup archive) on the filesystem containing directory where you create the backup archive.

Note that the instructions below specify the home directory of the host system's root user, which is typically found on the root filesystem.

Replace $HOME by a directory of your choice if you do not want to have the backup stored in root's home directory.

Create the backup archive by running the following command:

Note

Because the backup archive is compressed, it takes a relatively long time (over 10 minutes) even on a reasonably fast system.

cd $LFS
tar -cJpf $HOME/lfs-temp-tools-11.2.tar.xz .

Note

If continuing to chapter 8, don't forget to reenter the chroot environment as explained in the Important box below.

7.13.3. Restore

In case some mistakes have been made and you need to start over, you can use this backup to restore the system and save some recovery time. Since the sources are located under $LFS, they are included in the backup archive as well, so they do not need to be downloaded again. After checking that $LFS is set properly, restore the backup by executing the following commands:

Warning

The following commands are extremely dangerous. If you run rm -rf ./* as the root user and you do not change to the $LFS directory or the LFS environment variable is not set for the root user, it will destroy your entire host system. YOU ARE WARNED.

cd $LFS
rm -rf ./*
tar -xpf $HOME/lfs-temp-tools-11.2.tar.xz

Again, double check that the environment has been setup properly and continue building the rest of the system.

Important

If you left the chroot environment to create a backup or restart building using a restore, remember to check that the virtual filesystems are still mounted (findmnt | grep $LFS). If they are not mounted, remount them now as described in Section 7.3, “Preparing Virtual Kernel File Systems” and re-enter the chroot environment (see Section 7.4, “Entering the Chroot Environment”) before continuing.

Part IV. Building the LFS System

Chapter 8. Installing Basic System Software

8.1. Introduction

In this chapter, we start constructing the LFS system in earnest.

The installation of this software is straightforward. Although in many cases the installation instructions could be made shorter and more generic, we have opted to provide the full instructions for every package to minimize the possibilities for mistakes. The key to learning what makes a Linux system work is to know what each package is used for and why you (or the system) may need it.

We do not recommend using optimizations. They can make a program run slightly faster, but they may also cause compilation difficulties and problems when running the program. If a package refuses to compile when using optimization, try to compile it without optimization and see if that fixes the problem. Even if the package does compile when using optimization, there is the risk it may have been compiled incorrectly because of the complex interactions between the code and build tools. Also note that the -march and -mtune options using values not specified in the book have not been tested. This may cause problems with the toolchain packages (Binutils, GCC and Glibc). The small potential gains achieved in using compiler optimizations are often outweighed by the risks. First-time builders of LFS are encouraged to build without custom optimizations. The subsequent system will still run very fast and be stable at the same time.

Before the installation instructions, each installation page provides information about the package, including a concise description of what it contains, approximately how long it will take to build, and how much disk space is required during this building process. Following the installation instructions, there is a list of programs and libraries (along with brief descriptions) that the package installs.

Note

The SBU values and required disk space includes test suite data for all applicable packages in Chapter 8. SBU values have been calculated using a single CPU core (-j1) for all operations.

8.1.1. About libraries

In general, the LFS editors discourage building and installing static libraries. The original purpose for most static libraries has been made obsolete in a modern Linux system. In addition, linking a static library into a program can be detrimental. If an update to the library is needed to remove a security problem, all programs that use the static library will need to be relinked to the new library. Since the use of static libraries is not always obvious, the relevant programs (and the procedures needed to do the linking) may not even be known.

In the procedures in this chapter, we remove or disable installation of most static libraries. Usually this is done by passing a --disable-static option to configure. In other cases, alternate means are needed. In a few cases, especially glibc and gcc, the use of static libraries remains essential to the general package building process.

For a more complete discussion of libraries, see the discussion Libraries: Static or shared? in the BLFS book.

8.2. Package Management

Package Management is an often requested addition to the LFS Book. A Package Manager allows tracking the installation of files making it easy to remove and upgrade packages. As well as the binary and library files, a package manager will handle the installation of configuration files. Before you begin to wonder, NO—this section will not talk about nor recommend any particular package manager. What it provides is a roundup of the more popular techniques and how they work. The perfect package manager for you may be among these techniques or may be a combination of two or more of these techniques. This section briefly mentions issues that may arise when upgrading packages.

Some reasons why no package manager is mentioned in LFS or BLFS include:

  • Dealing with package management takes the focus away from the goals of these books—teaching how a Linux system is built.

  • There are multiple solutions for package management, each having its strengths and drawbacks. Including one that satisfies all audiences is difficult.

There are some hints written on the topic of package management. Visit the Hints Project and see if one of them fits your need.

8.2.1. Upgrade Issues

A Package Manager makes it easy to upgrade to newer versions when they are released. Generally the instructions in the LFS and BLFS books can be used to upgrade to the newer versions. Here are some points that you should be aware of when upgrading packages, especially on a running system.

  • If Linux kernel needs to be upgraded (for example, from 5.10.17 to 5.10.18 or 5.11.1), nothing else need to be rebuilt. The system will keep working fine thanks to the well-defined border between kernel and userspace. Specifically, Linux API headers need not to be (and should not be, see the next item) upgraded alongside the kernel. You'll need to reboot your system to use the upgraded kernel.

  • If Linux API headers or Glibc needs to be upgraded to a newer version, (e.g. from glibc-2.31 to glibc-2.32), it is safer to rebuild LFS. Though you may be able to rebuild all the packages in their dependency order, we do not recommend it.

  • If a package containing a shared library is updated, and if the name of the library changes, then any packages dynamically linked to the library need to be recompiled in order to link against the newer library. (Note that there is no correlation between the package version and the name of the library.) For example, consider a package foo-1.2.3 that installs a shared library with name libfoo.so.1. If you upgrade the package to a newer version foo-1.2.4 that installs a shared library with name libfoo.so.2. In this case, any packages that are dynamically linked to libfoo.so.1 need to be recompiled to link against libfoo.so.2 in order to use the new library version. You should not remove the previous libraries unless all the dependent packages are recompiled.

  • If a package containing a shared library is updated, and the name of library doesn't change, but the version number of the library file decreases (for example, the name of the library is kept named libfoo.so.1, but the name of library file is changed from libfoo.so.1.25 to libfoo.so.1.24), you should remove the library file from the previously installed version (libfoo.so.1.25 in the case). Or, a ldconfig run (by yourself using a command line, or by the installation of some package) will reset the symlink libfoo.so.1 to point to the old library file because it seems having a newer version, as its version number is larger. This situation may happen if you have to downgrade a package, or the package changes the versioning scheme of library files suddenly.

  • If a package containing a shared library is updated, and the name of library doesn't change, but a severe issue (especially, a security vulnerability) is fixed, all running programs linked to the shared library should be restarted. The following command, run as root after updating, will list what is using the old versions of those libraries (replace libfoo with the name of the library):

    grep -l  -e 'libfoo.*deleted' /proc/*/maps |
       tr -cd 0-9\\n | xargs -r ps u

    If OpenSSH is being used for accessing the system and it is linked to the updated library, you need to restart sshd service, then logout, login again, and rerun that command to confirm nothing is still using the deleted libraries.

  • If a binary or a shared library is overwritten, the processes using the code or data in the binary or library may crash. The correct way to update a binary or a shared library without causing the process to crash is to remove it first, then install the new version into position. The install command provided by Coreutils has already implemented this and most packages use it to install binaries and libraries. This means that you won't be troubled by this issue most of the time. However, the install process of some packages (notably Mozilla JS in BLFS) just overwrites the file if it exists and causes a crash, so it's safer to save your work and close unneeded running processes before updating a package.

8.2.2. Package Management Techniques

The following are some common package management techniques. Before making a decision on a package manager, do some research on the various techniques, particularly the drawbacks of the particular scheme.

8.2.2.1. It is All in My Head!

Yes, this is a package management technique. Some folks do not find the need for a package manager because they know the packages intimately and know what files are installed by each package. Some users also do not need any package management because they plan on rebuilding the entire system when a package is changed.

8.2.2.2. Install in Separate Directories

This is a simplistic package management that does not need any extra package to manage the installations. Each package is installed in a separate directory. For example, package foo-1.1 is installed in /usr/pkg/foo-1.1 and a symlink is made from /usr/pkg/foo to /usr/pkg/foo-1.1. When installing a new version foo-1.2, it is installed in /usr/pkg/foo-1.2 and the previous symlink is replaced by a symlink to the new version.

Environment variables such as PATH, LD_LIBRARY_PATH, MANPATH, INFOPATH and CPPFLAGS need to be expanded to include /usr/pkg/foo. For more than a few packages, this scheme becomes unmanageable.

8.2.2.3. Symlink Style Package Management

This is a variation of the previous package management technique. Each package is installed similar to the previous scheme. But instead of making the symlink, each file is symlinked into the /usr hierarchy. This removes the need to expand the environment variables. Though the symlinks can be created by the user to automate the creation, many package managers have been written using this approach. A few of the popular ones include Stow, Epkg, Graft, and Depot.

The installation needs to be faked, so that the package thinks that it is installed in /usr though in reality it is installed in the /usr/pkg hierarchy. Installing in this manner is not usually a trivial task. For example, consider that you are installing a package libfoo-1.1. The following instructions may not install the package properly:

./configure --prefix=/usr/pkg/libfoo/1.1
make
make install

The installation will work, but the dependent packages may not link to libfoo as you would expect. If you compile a package that links against libfoo, you may notice that it is linked to /usr/pkg/libfoo/1.1/lib/libfoo.so.1 instead of /usr/lib/libfoo.so.1 as you would expect. The correct approach is to use the DESTDIR strategy to fake installation of the package. This approach works as follows:

./configure --prefix=/usr
make
make DESTDIR=/usr/pkg/libfoo/1.1 install

Most packages support this approach, but there are some which do not. For the non-compliant packages, you may either need to manually install the package, or you may find that it is easier to install some problematic packages into /opt.

8.2.2.4. Timestamp Based

In this technique, a file is timestamped before the installation of the package. After the installation, a simple use of the find command with the appropriate options can generate a log of all the files installed after the timestamp file was created. A package manager written with this approach is install-log.

Though this scheme has the advantage of being simple, it has two drawbacks. If, during installation, the files are installed with any timestamp other than the current time, those files will not be tracked by the package manager. Also, this scheme can only be used when one package is installed at a time. The logs are not reliable if two packages are being installed on two different consoles.

8.2.2.5. Tracing Installation Scripts

In this approach, the commands that the installation scripts perform are recorded. There are two techniques that one can use:

The LD_PRELOAD environment variable can be set to point to a library to be preloaded before installation. During installation, this library tracks the packages that are being installed by attaching itself to various executables such as cp, install, mv and tracking the system calls that modify the filesystem. For this approach to work, all the executables need to be dynamically linked without the suid or sgid bit. Preloading the library may cause some unwanted side-effects during installation. Therefore, it is advised that one performs some tests to ensure that the package manager does not break anything and logs all the appropriate files.

The second technique is to use strace, which logs all system calls made during the execution of the installation scripts.

8.2.2.6. Creating Package Archives

In this scheme, the package installation is faked into a separate tree as described in the Symlink style package management. After the installation, a package archive is created using the installed files. This archive is then used to install the package either on the local machine or can even be used to install the package on other machines.

This approach is used by most of the package managers found in the commercial distributions. Examples of package managers that follow this approach are RPM (which, incidentally, is required by the Linux Standard Base Specification), pkg-utils, Debian's apt, and Gentoo's Portage system. A hint describing how to adopt this style of package management for LFS systems is located at https://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt.

Creation of package files that include dependency information is complex and is beyond the scope of LFS.

Slackware uses a tar based system for package archives. This system purposely does not handle package dependencies as more complex package managers do. For details of Slackware package management, see http://www.slackbook.org/html/package-management.html.

8.2.2.7. User Based Management

This scheme, unique to LFS, was devised by Matthias Benkmann, and is available from the Hints Project. In this scheme, each package is installed as a separate user into the standard locations. Files belonging to a package are easily identified by checking the user ID. The features and shortcomings of this approach are too complex to describe in this section. For the details please see the hint at https://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt.

8.2.3. Deploying LFS on Multiple Systems

One of the advantages of an LFS system is that there are no files that depend on the position of files on a disk system. Cloning an LFS build to another computer with the same architecture as the base system is as simple as using tar on the LFS partition that contains the root directory (about 250MB uncompressed for a base LFS build), copying that file via network transfer or CD-ROM to the new system and expanding it. From that point, a few configuration files will have to be changed. Configuration files that may need to be updated include: /etc/hosts, /etc/fstab, /etc/passwd, /etc/group, /etc/shadow, /etc/ld.so.conf, /etc/sysconfig/rc.site, /etc/sysconfig/network, and /etc/sysconfig/ifconfig.eth0.

A custom kernel may need to be built for the new system depending on differences in system hardware and the original kernel configuration.

Note

There have been some reports of issues when copying between similar but not identical architectures. For instance, the instruction set for an Intel system is not identical with an AMD processor and later versions of some processors may have instructions that are unavailable in earlier versions.

Finally the new system has to be made bootable via Section 10.4, “Using GRUB to Set Up the Boot Process”.

8.3. Man-pages-5.13

The Man-pages package contains over 2,200 man pages.

Approximate build time: less than 0.1 SBU
Required disk space: 33 MB

8.3.1. Installation of Man-pages

Install Man-pages by running:

make prefix=/usr install

8.3.2. Contents of Man-pages

Installed files: various man pages

Short Descriptions

man pages

Describe C programming language functions, important device files, and significant configuration files

8.4. Iana-Etc-20220812

The Iana-Etc package provides data for network services and protocols.

Approximate build time: less than 0.1 SBU
Required disk space: 4.8 MB

8.4.1. Installation of Iana-Etc

For this package, we only need to copy the files into place:

cp services protocols /etc

8.4.2. Contents of Iana-Etc

Installed files: /etc/protocols and /etc/services

Short Descriptions

/etc/protocols

Describes the various DARPA Internet protocols that are available from the TCP/IP subsystem

/etc/services

Provides a mapping between friendly textual names for internet services, and their underlying assigned port numbers and protocol types

8.5. Glibc-2.36

The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

Approximate build time: 24 SBU
Required disk space: 2.8 GB

8.5.1. Installation of Glibc

Some of the Glibc programs use the non-FHS compliant /var/db directory to store their runtime data. Apply the following patch to make such programs store their runtime data in the FHS-compliant locations:

patch -Np1 -i ../glibc-2.36-fhs-1.patch

The Glibc documentation recommends building Glibc in a dedicated build directory:

mkdir -v build
cd       build

Ensure that the ldconfig and sln utilities will be installed into /usr/sbin:

echo "rootsbindir=/usr/sbin" > configparms

Prepare Glibc for compilation:

../configure --prefix=/usr                            \
             --disable-werror                         \
             --enable-kernel=3.2                      \
             --enable-stack-protector=strong          \
             --with-headers=/usr/include              \
             libc_cv_slibdir=/usr/lib

The meaning of the configure options:

--disable-werror

This option disables the -Werror option passed to GCC. This is necessary for running the test suite.

--enable-kernel=3.2

This option tells the build system that this glibc may be used with kernels as old as 3.2. This means generating workarounds in case a system call introduced in a later version cannot be used.

--enable-stack-protector=strong

This option increases system security by adding extra code to check for buffer overflows, such as stack smashing attacks.

--with-headers=/usr/include

This option tells the build system where to find the kernel API headers.

libc_cv_slibdir=/usr/lib

This variable sets the correct library for all systems. We do not want lib64 to be used.

Compile the package:

make

Important

In this section, the test suite for Glibc is considered critical. Do not skip it under any circumstance.

Generally a few tests do not pass. The test failures listed below are usually safe to ignore.

make check

You may see some test failures. The Glibc test suite is somewhat dependent on the host system. A few failures out of over 4200 tests can generally be ignored. This is a list of the most common issues seen for recent versions of LFS:

  • io/tst-lchmod is known to fail in the LFS chroot environment.

  • misc/tst-ttyname is known to fail in the LFS chroot environment.

  • The nss/tst-nss-files-hosts-long test is known to fail if the system has no non-loopback IP addresses.

  • The stdlib/tst-arc4random-thread test is known to fail if the host kernel is relatively old.

  • Some tests, for example nss/tst-nss-files-hosts-multi, are known to fail on relatively slow systems due to an internal timeout.

Though it is a harmless message, the install stage of Glibc will complain about the absence of /etc/ld.so.conf. Prevent this warning with:

touch /etc/ld.so.conf

Fix the Makefile to skip an unneeded sanity check that fails in the LFS partial environment:

sed '/test-installation/s@$(PERL)@echo not running@' -i ../Makefile

Install the package:

make install

Fix hardcoded path to the executable loader in ldd script:

sed '/RTLDLIST=/s@/usr@@g' -i /usr/bin/ldd

Install the configuration file and runtime directory for nscd:

cp -v ../nscd/nscd.conf /etc/nscd.conf
mkdir -pv /var/cache/nscd

Next, install the locales that can make the system respond in a different language. None of the locales are required, but if some of them are missing, the test suites of future packages would skip important testcases.

Individual locales can be installed using the localedef program. E.g., the second localedef command below combines the /usr/share/i18n/locales/cs_CZ charset-independent locale definition with the /usr/share/i18n/charmaps/UTF-8.gz charmap definition and appends the result to the /usr/lib/locale/locale-archive file. The following instructions will install the minimum set of locales necessary for the optimal coverage of tests:

mkdir -pv /usr/lib/locale
localedef -i POSIX -f UTF-8 C.UTF-8 2> /dev/null || true
localedef -i cs_CZ -f UTF-8 cs_CZ.UTF-8
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i de_DE -f UTF-8 de_DE.UTF-8
localedef -i el_GR -f ISO-8859-7 el_GR
localedef -i en_GB -f ISO-8859-1 en_GB
localedef -i en_GB -f UTF-8 en_GB.UTF-8
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH
localedef -i en_US -f ISO-8859-1 en_US
localedef -i en_US -f UTF-8 en_US.UTF-8
localedef -i es_ES -f ISO-8859-15 es_ES@euro
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i fr_FR -f UTF-8 fr_FR.UTF-8
localedef -i is_IS -f ISO-8859-1 is_IS
localedef -i is_IS -f UTF-8 is_IS.UTF-8
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i it_IT -f ISO-8859-15 it_IT@euro
localedef -i it_IT -f UTF-8 it_IT.UTF-8
localedef -i ja_JP -f EUC-JP ja_JP
localedef -i ja_JP -f SHIFT_JIS ja_JP.SJIS 2> /dev/null || true
localedef -i ja_JP -f UTF-8 ja_JP.UTF-8
localedef -i nl_NL@euro -f ISO-8859-15 nl_NL@euro
localedef -i ru_RU -f KOI8-R ru_RU.KOI8-R
localedef -i ru_RU -f UTF-8 ru_RU.UTF-8
localedef -i se_NO -f UTF-8 se_NO.UTF-8
localedef -i ta_IN -f UTF-8 ta_IN.UTF-8
localedef -i tr_TR -f UTF-8 tr_TR.UTF-8
localedef -i zh_CN -f GB18030 zh_CN.GB18030
localedef -i zh_HK -f BIG5-HKSCS zh_HK.BIG5-HKSCS
localedef -i zh_TW -f UTF-8 zh_TW.UTF-8

In addition, install the locale for your own country, language and character set.

Alternatively, install all locales listed in the glibc-2.36/localedata/SUPPORTED file (it includes every locale listed above and many more) at once with the following time-consuming command:

make localedata/install-locales

Then use the localedef command to create and install locales not listed in the glibc-2.36/localedata/SUPPORTED file when you need them. For instance, the following two locales are needed for some tests later in this chapter:

localedef -i POSIX -f UTF-8 C.UTF-8 2> /dev/null || true
localedef -i ja_JP -f SHIFT_JIS ja_JP.SJIS 2> /dev/null || true

Note

Glibc now uses libidn2 when resolving internationalized domain names. This is a run time dependency. If this capability is needed, the instructions for installing libidn2 are in the BLFS libidn2 page.

8.5.2. Configuring Glibc

8.5.2.1. Adding nsswitch.conf

The /etc/nsswitch.conf file needs to be created because the Glibc defaults do not work well in a networked environment.

Create a new file /etc/nsswitch.conf by running the following:

cat > /etc/nsswitch.conf << "EOF"
# Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: files
services: files
ethers: files
rpc: files

# End /etc/nsswitch.conf
EOF

8.5.2.2. Adding time zone data

Install and set up the time zone data with the following:

tar -xf ../../tzdata2022c.tar.gz

ZONEINFO=/usr/share/zoneinfo
mkdir -pv $ZONEINFO/{posix,right}

for tz in etcetera southamerica northamerica europe africa antarctica  \
          asia australasia backward; do
    zic -L /dev/null   -d $ZONEINFO       ${tz}
    zic -L /dev/null   -d $ZONEINFO/posix ${tz}
    zic -L leapseconds -d $ZONEINFO/right ${tz}
done

cp -v zone.tab zone1970.tab iso3166.tab $ZONEINFO
zic -d $ZONEINFO -p America/New_York
unset ZONEINFO

The meaning of the zic commands:

zic -L /dev/null ...

This creates posix time zones without any leap seconds. It is conventional to put these in both zoneinfo and zoneinfo/posix. It is necessary to put the POSIX time zones in zoneinfo, otherwise various test-suites will report errors. On an embedded system, where space is tight and you do not intend to ever update the time zones, you could save 1.9 MB by not using the posix directory, but some applications or test-suites might produce some failures.

zic -L leapseconds ...

This creates right time zones, including leap seconds. On an embedded system, where space is tight and you do not intend to ever update the time zones, or care about the correct time, you could save 1.9MB by omitting the right directory.

zic ... -p ...

This creates the posixrules file. We use New York because POSIX requires the daylight savings time rules to be in accordance with US rules.

One way to determine the local time zone is to run the following script:

tzselect

After answering a few questions about the location, the script will output the name of the time zone (e.g., America/Edmonton). There are also some other possible time zones listed in /usr/share/zoneinfo such as Canada/Eastern or EST5EDT that are not identified by the script but can be used.

Then create the /etc/localtime file by running:

ln -sfv /usr/share/zoneinfo/<xxx> /etc/localtime

Replace <xxx> with the name of the time zone selected (e.g., Canada/Eastern).

8.5.2.3. Configuring the Dynamic Loader

By default, the dynamic loader (/lib/ld-linux.so.2) searches through /usr/lib for dynamic libraries that are needed by programs as they are run. However, if there are libraries in directories other than /usr/lib, these need to be added to the /etc/ld.so.conf file in order for the dynamic loader to find them. Two directories that are commonly known to contain additional libraries are /usr/local/lib and /opt/lib, so add those directories to the dynamic loader's search path.

Create a new file /etc/ld.so.conf by running the following:

cat > /etc/ld.so.conf << "EOF"
# Begin /etc/ld.so.conf
/usr/local/lib
/opt/lib

EOF

If desired, the dynamic loader can also search a directory and include the contents of files found there. Generally the files in this include directory are one line specifying the desired library path. To add this capability run the following commands:

cat >> /etc/ld.so.conf << "EOF"
# Add an include directory
include /etc/ld.so.conf.d/*.conf

EOF
mkdir -pv /etc/ld.so.conf.d

8.5.3. Contents of Glibc

Installed programs: gencat, getconf, getent, iconv, iconvconfig, ldconfig, ldd, lddlibc4, ld.so (symlink to ld-linux-x86-64.so.2 or ld-linux.so.2), locale, localedef, makedb, mtrace, nscd, pcprofiledump, pldd, sln, sotruss, sprof, tzselect, xtrace, zdump, and zic
Installed libraries: ld-linux-x86-64.so.2, ld-linux.so.2, libBrokenLocale.{a,so}, libanl.{a,so}, libc.{a,so}, libc_nonshared.a, libc_malloc_debug.so, libcrypt.{a,so}, libdl.{a,so.2}, libg.a, libm.{a,so}, libmcheck.a, libmemusage.so, libmvec.{a,so}, libnsl.so.1, libnss_compat.so, libnss_dns.so, libnss_files.so, libnss_hesiod.so, libpcprofile.so, libpthread.{a,so.0}, libresolv.{a,so}, librt.{a,so.1}, libthread_db.so, and libutil.{a,so.1}
Installed directories: /usr/include/arpa, /usr/include/bits, /usr/include/gnu, /usr/include/net, /usr/include/netash, /usr/include/netatalk, /usr/include/netax25, /usr/include/neteconet, /usr/include/netinet, /usr/include/netipx, /usr/include/netiucv, /usr/include/netpacket, /usr/include/netrom, /usr/include/netrose, /usr/include/nfs, /usr/include/protocols, /usr/include/rpc, /usr/include/sys, /usr/lib/audit, /usr/lib/gconv, /usr/lib/locale, /usr/libexec/getconf, /usr/share/i18n, /usr/share/zoneinfo, /var/cache/nscd, and /var/lib/nss_db

Short Descriptions

gencat

Generates message catalogues

getconf

Displays the system configuration values for file system specific variables

getent

Gets entries from an administrative database

iconv

Performs character set conversion

iconvconfig

Creates fastloading iconv module configuration files

ldconfig

Configures the dynamic linker runtime bindings

ldd

Reports which shared libraries are required by each given program or shared library

lddlibc4

Assists ldd with object files. It does not exist on newer architectures like x86_64

locale

Prints various information about the current locale

localedef

Compiles locale specifications

makedb

Creates a simple database from textual input

mtrace

Reads and interprets a memory trace file and displays a summary in human-readable format

nscd

A daemon that provides a cache for the most common name service requests

pcprofiledump

Dump information generated by PC profiling

pldd

Lists dynamic shared objects used by running processes

sln

A statically linked ln program

sotruss

Traces shared library procedure calls of a specified command

sprof

Reads and displays shared object profiling data

tzselect

Asks the user about the location of the system and reports the corresponding time zone description

xtrace

Traces the execution of a program by printing the currently executed function

zdump

The time zone dumper

zic

The time zone compiler

ld-*.so

The helper program for shared library executables

libBrokenLocale

Used internally by Glibc as a gross hack to get broken programs (e.g., some Motif applications) running. See comments in glibc-2.36/locale/broken_cur_max.c for more information

libanl

An asynchronous name lookup library

libc

The main C library

libc_malloc_debug

Turns on memory allocation checking when preloaded

libcrypt

The cryptography library

libdl

Dummy library containing no functions. Previously was the dynamic linking interface library, whose functions are now in libc

libg

Dummy library containing no functions. Previously was a runtime library for g++

libm

The mathematical library

libmvec

The vector math library, linked in as needed when libm is used

libmcheck

Turns on memory allocation checking when linked to

libmemusage

Used by memusage to help collect information about the memory usage of a program

libnsl

The network services library, now deprecated

libnss_*

The Name Service Switch modules, containing functions for resolving host names, user names, group names, aliases, services, protocols, etc. Loaded by libc according to the configuration in /etc/nsswitch.conf

libpcprofile

Can be preloaded to PC profile an executable

libpthread

Dummy library containing no functions. Previously contained functions providing most of the interfaces specified by the POSIX.1b Realtime Extension, now the functions are in libc

libresolv

Contains functions for creating, sending, and interpreting packets to the Internet domain name servers

librt

Contains functions providing most of the interfaces specified by the POSIX.1b Realtime Extension

libthread_db

Contains functions useful for building debuggers for multi-threaded programs

libutil

Dummy library containing no functions. Previously contained code for standard functions used in many different Unix utilities. These functions are now in libc

8.6. Zlib-1.2.12

The Zlib package contains compression and decompression routines used by some programs.

Approximate build time: less than 0.1 SBU
Required disk space: 6.1 MB

8.6.1. Installation of Zlib

Prepare Zlib for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Remove a useless static library:

rm -fv /usr/lib/libz.a

8.6.2. Contents of Zlib

Installed libraries: libz.so

Short Descriptions

libz

Contains compression and decompression functions used by some programs

8.7. Bzip2-1.0.8

The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2 yields a much better compression percentage than with the traditional gzip.

Approximate build time: less than 0.1 SBU
Required disk space: 7.2 MB

8.7.1. Installation of Bzip2

Apply a patch that will install the documentation for this package:

patch -Np1 -i ../bzip2-1.0.8-install_docs-1.patch

The following command ensures installation of symbolic links are relative:

sed -i 's@\(ln -s -f \)$(PREFIX)/bin/@\1@' Makefile

Ensure the man pages are installed into the correct location:

sed -i "s@(PREFIX)/man@(PREFIX)/share/man@g" Makefile

Prepare Bzip2 for compilation with:

make -f Makefile-libbz2_so
make clean

The meaning of the make parameter:

-f Makefile-libbz2_so

This will cause Bzip2 to be built using a different Makefile file, in this case the Makefile-libbz2_so file, which creates a dynamic libbz2.so library and links the Bzip2 utilities against it.

Compile and test the package:

make

Install the programs:

make PREFIX=/usr install

Install the shared library:

cp -av libbz2.so.* /usr/lib
ln -sv libbz2.so.1.0.8 /usr/lib/libbz2.so

Install the shared bzip2 binary into the /usr/bin directory, and replace two copies of bzip2 with symlinks:

cp -v bzip2-shared /usr/bin/bzip2
for i in /usr/bin/{bzcat,bunzip2}; do
  ln -sfv bzip2 $i
done

Remove a useless static library:

rm -fv /usr/lib/libbz2.a

8.7.2. Contents of Bzip2

Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp (link to bzdiff), bzdiff, bzegrep (link to bzgrep), bzfgrep (link to bzgrep), bzgrep, bzip2, bzip2recover, bzless (link to bzmore), and bzmore
Installed libraries: libbz2.so
Installed directory: /usr/share/doc/bzip2-1.0.8

Short Descriptions

bunzip2

Decompresses bzipped files

bzcat

Decompresses to standard output

bzcmp

Runs cmp on bzipped files

bzdiff

Runs diff on bzipped files

bzegrep

Runs egrep on bzipped files

bzfgrep

Runs fgrep on bzipped files

bzgrep

Runs grep on bzipped files

bzip2

Compresses files using the Burrows-Wheeler block sorting text compression algorithm with Huffman coding; the compression rate is better than that achieved by more conventional compressors using Lempel-Ziv algorithms, like gzip

bzip2recover

Tries to recover data from damaged bzipped files

bzless

Runs less on bzipped files

bzmore

Runs more on bzipped files

libbz2

The library implementing lossless, block-sorting data compression, using the Burrows-Wheeler algorithm

8.8. Xz-5.2.6

The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with the traditional gzip or bzip2 commands.

Approximate build time: 0.2 SBU
Required disk space: 16 MB

8.8.1. Installation of Xz

Prepare Xz for compilation with:

./configure --prefix=/usr    \
            --disable-static \
            --docdir=/usr/share/doc/xz-5.2.6

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.8.2. Contents of Xz

Installed programs: lzcat (link to xz), lzcmp (link to xzdiff), lzdiff (link to xzdiff), lzegrep (link to xzgrep), lzfgrep (link to xzgrep), lzgrep (link to xzgrep), lzless (link to xzless), lzma (link to xz), lzmadec, lzmainfo, lzmore (link to xzmore), unlzma (link to xz), unxz (link to xz), xz, xzcat (link to xz), xzcmp (link to xzdiff), xzdec, xzdiff, xzegrep (link to xzgrep), xzfgrep (link to xzgrep), xzgrep, xzless, and xzmore
Installed libraries: liblzma.so
Installed directories: /usr/include/lzma and /usr/share/doc/xz-5.2.6

Short Descriptions

lzcat

Decompresses to standard output

lzcmp

Runs cmp on LZMA compressed files

lzdiff

Runs diff on LZMA compressed files

lzegrep

Runs egrep on LZMA compressed files

lzfgrep

Runs fgrep on LZMA compressed files

lzgrep

Runs grep on LZMA compressed files

lzless

Runs less on LZMA compressed files

lzma

Compresses or decompresses files using the LZMA format

lzmadec

A small and fast decoder for LZMA compressed files

lzmainfo

Shows information stored in the LZMA compressed file header

lzmore

Runs more on LZMA compressed files

unlzma

Decompresses files using the LZMA format

unxz

Decompresses files using the XZ format

xz

Compresses or decompresses files using the XZ format

xzcat

Decompresses to standard output

xzcmp

Runs cmp on XZ compressed files

xzdec

A small and fast decoder for XZ compressed files

xzdiff

Runs diff on XZ compressed files

xzegrep

Runs egrep on XZ compressed files

xzfgrep

Runs fgrep on XZ compressed files

xzgrep

Runs grep on XZ compressed files

xzless

Runs less on XZ compressed files

xzmore

Runs more on XZ compressed files

liblzma

The library implementing lossless, block-sorting data compression, using the Lempel-Ziv-Markov chain algorithm

8.9. Zstd-1.5.2

Zstandard is a real-time compression algorithm, providing high compression ratios. It offers a very wide range of compression / speed trade-offs, while being backed by a very fast decoder.

Approximate build time: 1.1 SBU
Required disk space: 56 MB

8.9.1. Installation of Zstd

Apply a patch to fix some issues identified by upstream:

patch -Np1 -i ../zstd-1.5.2-upstream_fixes-1.patch

Compile the package:

make prefix=/usr

Note

In the test output there are several places that indicate 'failed'. These are expected and only 'FAIL' is an actual test failure. There should be no test failures.

To test the results, issue:

make check

Install the package:

make prefix=/usr install

Remove the static library:

rm -v /usr/lib/libzstd.a

8.9.2. Contents of Zstd

Installed programs: zstd, zstdcat (link to zstd), zstdgrep, zstdless, zstdmt (link to zstd), and unzstd (link to zstd)
Installed library: libzstd.so

Short Descriptions

zstd

Compresses or decompresses files using the ZSTD format

zstdgrep

Runs grep on ZSTD compressed files

zstdless

Runs less on ZSTD compressed files

libzstd

The library implementing lossless data compression, using the ZSTD algorithm

8.10. File-5.42

The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.1 SBU
Required disk space: 16 MB

8.10.1. Installation of File

Prepare File for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.10.2. Contents of File

Installed programs: file
Installed library: libmagic.so

Short Descriptions

file

Tries to classify each given file; it does this by performing several tests—file system tests, magic number tests, and language tests

libmagic

Contains routines for magic number recognition, used by the file program

8.11. Readline-8.1.2

The Readline package is a set of libraries that offers command-line editing and history capabilities.

Approximate build time: 0.1 SBU
Required disk space: 15 MB

8.11.1. Installation of Readline

Reinstalling Readline will cause the old libraries to be moved to <libraryname>.old. While this is normally not a problem, in some cases it can trigger a linking bug in ldconfig. This can be avoided by issuing the following two seds:

sed -i '/MV.*old/d' Makefile.in
sed -i '/{OLDSUFF}/c:' support/shlib-install

Prepare Readline for compilation:

./configure --prefix=/usr    \
            --disable-static \
            --with-curses    \
            --docdir=/usr/share/doc/readline-8.1.2

The meaning of the configure option:

--with-curses

This option tells Readline that it can find the termcap library functions in the curses library, rather than a separate termcap library. It allows generating a correct readline.pc file.

Compile the package:

make SHLIB_LIBS="-lncursesw"

The meaning of the make option:

SHLIB_LIBS="-lncursesw"

This option forces Readline to link against the libncursesw library.

This package does not come with a test suite.

Install the package:

make SHLIB_LIBS="-lncursesw" install

If desired, install the documentation:

install -v -m644 doc/*.{ps,pdf,html,dvi} /usr/share/doc/readline-8.1.2

8.11.2. Contents of Readline

Installed libraries: libhistory.so and libreadline.so
Installed directories: /usr/include/readline and /usr/share/doc/readline-8.1.2

Short Descriptions

libhistory

Provides a consistent user interface for recalling lines of history

libreadline

Provides a set of commands for manipulating text entered in an interactive session of a program

8.12. M4-1.4.19

The M4 package contains a macro processor.

Approximate build time: 0.6 SBU
Required disk space: 49 MB

8.12.1. Installation of M4

Prepare M4 for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.12.2. Contents of M4

Installed program: m4

Short Descriptions

m4

Copies the given files while expanding the macros that they contain. These macros are either built-in or user-defined and can take any number of arguments. Besides performing macro expansion, m4 has built-in functions for including named files, running Unix commands, performing integer arithmetic, manipulating text, recursion, etc. The m4 program can be used either as a front-end to a compiler or as a macro processor in its own right

8.13. Bc-6.0.1

The Bc package contains an arbitrary precision numeric processing language.

Approximate build time: less than 0.1 SBU
Required disk space: 7.4 MB

8.13.1. Installation of Bc

Prepare Bc for compilation:

CC=gcc ./configure --prefix=/usr -G -O3 -r

The meaning of the configure options:

CC=gcc

This parameter specifies the compiler to use.

-G

Omit parts of the test suite that won't work without a GNU bc present.

-O3

Specify the optimization to use.

-r

Enable the use of Readline to improve the line editing feature of bc.

Compile the package:

make

To test bc, run:

make test

Install the package:

make install

8.13.2. Contents of Bc

Installed programs: bc and dc

Short Descriptions

bc

A command line calculator

dc

A reverse-polish command line calculator

8.14. Flex-2.6.4

The Flex package contains a utility for generating programs that recognize patterns in text.

Approximate build time: 0.4 SBU
Required disk space: 33 MB

8.14.1. Installation of Flex

Prepare Flex for compilation:

./configure --prefix=/usr \
            --docdir=/usr/share/doc/flex-2.6.4 \
            --disable-static

Compile the package:

make

To test the results (about 0.5 SBU), issue:

make check

Install the package:

make install

A few programs do not know about flex yet and try to run its predecessor, lex. To support those programs, create a symbolic link named lex that runs flex in lex emulation mode:

ln -sv flex /usr/bin/lex

8.14.2. Contents of Flex

Installed programs: flex, flex++ (link to flex), and lex (link to flex)
Installed libraries: libfl.so
Installed directory: /usr/share/doc/flex-2.6.4

Short Descriptions

flex

A tool for generating programs that recognize patterns in text; it allows for the versatility to specify the rules for pattern-finding, eradicating the need to develop a specialized program

flex++

An extension of flex, is used for generating C++ code and classes. It is a symbolic link to flex

lex

A symbolic link that runs flex in lex emulation mode

libfl

The flex library

8.15. Tcl-8.6.12

The Tcl package contains the Tool Command Language, a robust general-purpose scripting language. The Expect package is written in the Tcl language.

Approximate build time: 3.2 SBU
Required disk space: 88 MB

8.15.1. Installation of Tcl

This package and the next two (Expect and DejaGNU) are installed to support running the test suites for binutils and GCC and other packages. Installing three packages for testing purposes may seem excessive, but it is very reassuring, if not essential, to know that the most important tools are working properly.

First, unpack the documentation by issuing the following command:

tar -xf ../tcl8.6.12-html.tar.gz --strip-components=1

Prepare Tcl for compilation:

SRCDIR=$(pwd)
cd unix
./configure --prefix=/usr           \
            --mandir=/usr/share/man

Build the package:

make

sed -e "s|$SRCDIR/unix|/usr/lib|" \
    -e "s|$SRCDIR|/usr/include|"  \
    -i tclConfig.sh

sed -e "s|$SRCDIR/unix/pkgs/tdbc1.1.3|/usr/lib/tdbc1.1.3|" \
    -e "s|$SRCDIR/pkgs/tdbc1.1.3/generic|/usr/include|"    \
    -e "s|$SRCDIR/pkgs/tdbc1.1.3/library|/usr/lib/tcl8.6|" \
    -e "s|$SRCDIR/pkgs/tdbc1.1.3|/usr/include|"            \
    -i pkgs/tdbc1.1.3/tdbcConfig.sh

sed -e "s|$SRCDIR/unix/pkgs/itcl4.2.2|/usr/lib/itcl4.2.2|" \
    -e "s|$SRCDIR/pkgs/itcl4.2.2/generic|/usr/include|"    \
    -e "s|$SRCDIR/pkgs/itcl4.2.2|/usr/include|"            \
    -i pkgs/itcl4.2.2/itclConfig.sh

unset SRCDIR

The various sed instructions after the make command removes references to the build directory from the configuration files and replaces them with the install directory. This is not mandatory for the remainder of LFS, but may be needed in case a package built later uses Tcl.

To test the results, issue:

make test

Install the package:

make install

Make the installed library writable so debugging symbols can be removed later:

chmod -v u+w /usr/lib/libtcl8.6.so

Install Tcl's headers. The next package, Expect, requires them.

make install-private-headers

Now make a necessary symbolic link:

ln -sfv tclsh8.6 /usr/bin/tclsh

Rename a man page that conflicts with a Perl man page:

mv /usr/share/man/man3/{Thread,Tcl_Thread}.3

If you downloaded the optional documentation, install it by issuing the following commands:

mkdir -v -p /usr/share/doc/tcl-8.6.12
cp -v -r  ../html/* /usr/share/doc/tcl-8.6.12

8.15.2. Contents of Tcl

Installed programs: tclsh (link to tclsh8.6) and tclsh8.6
Installed library: libtcl8.6.so and libtclstub8.6.a

Short Descriptions

tclsh8.6

The Tcl command shell

tclsh

A link to tclsh8.6

libtcl8.6.so

The Tcl library

libtclstub8.6.a

The Tcl Stub library

8.16. Expect-5.45.4

The Expect package contains tools for automating, via scripted dialogues, interactive applications such as telnet, ftp, passwd, fsck, rlogin, and tip. Expect is also useful for testing these same applications as well as easing all sorts of tasks that are prohibitively difficult with anything else. The DejaGnu framework is written in Expect.

Approximate build time: 0.2 SBU
Required disk space: 3.9 MB

8.16.1. Installation of Expect

Prepare Expect for compilation:

./configure --prefix=/usr           \
            --with-tcl=/usr/lib     \
            --enable-shared         \
            --mandir=/usr/share/man \
            --with-tclinclude=/usr/include

The meaning of the configure options:

--with-tcl=/usr/lib

This parameter is needed to tell configure where the tclConfig.sh script is located.

--with-tclinclude=/usr/include

This explicitly tells Expect where to find Tcl's internal headers.

Build the package:

make

To test the results, issue:

make test

Install the package:

make install
ln -svf expect5.45.4/libexpect5.45.4.so /usr/lib

8.16.2. Contents of Expect

Installed program: expect
Installed library: libexpect5.45.4.so

Short Descriptions

expect

Communicates with other interactive programs according to a script

libexpect-5.45.4.so

Contains functions that allow Expect to be used as a Tcl extension or to be used directly from C or C++ (without Tcl)

8.17. DejaGNU-1.6.3

The DejaGnu package contains a framework for running test suites on GNU tools. It is written in expect, which itself uses Tcl (Tool Command Language).

Approximate build time: less than 0.1 SBU
Required disk space: 6.9 MB

8.17.1. Installation of DejaGNU

The upstream recommends building DejaGNU in a dedicated build directory:

mkdir -v build
cd       build

Prepare DejaGNU for compilation:

../configure --prefix=/usr
makeinfo --html --no-split -o doc/dejagnu.html ../doc/dejagnu.texi
makeinfo --plaintext       -o doc/dejagnu.txt  ../doc/dejagnu.texi

Build and install the package:

make install
install -v -dm755  /usr/share/doc/dejagnu-1.6.3
install -v -m644   doc/dejagnu.{html,txt} /usr/share/doc/dejagnu-1.6.3

To test the results, issue:

make check

8.17.2. Contents of DejaGNU

Installed program: dejagnu and runtest

Short Descriptions

dejagnu

DejaGNU auxiliary command launcher

runtest

A wrapper script that locates the proper expect shell and then runs DejaGNU

8.18. Binutils-2.39

The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 8.2 SBU
Required disk space: 2.7 GB

8.18.1. Installation of Binutils

Verify that the PTYs are working properly inside the chroot environment by performing a simple test:

expect -c "spawn ls"

This command should output the following:

spawn ls

If, instead, the output includes the message below, then the environment is not set up for proper PTY operation. This issue needs to be resolved before running the test suites for Binutils and GCC:

The system has no more ptys.
Ask your system administrator to create more.

The Binutils documentation recommends building Binutils in a dedicated build directory:

mkdir -v build
cd       build

Prepare Binutils for compilation:

../configure --prefix=/usr       \
             --sysconfdir=/etc   \
             --enable-gold       \
             --enable-ld=default \
             --enable-plugins    \
             --enable-shared     \
             --disable-werror    \
             --enable-64-bit-bfd \
             --with-system-zlib

The meaning of the configure parameters:

--enable-gold

Build the gold linker and install it as ld.gold (along side the default linker).

--enable-ld=default

Build the original bfd linker and install it as both ld (the default linker) and ld.bfd.

--enable-plugins

Enables plugin support for the linker.

--enable-64-bit-bfd

Enables 64-bit support (on hosts with narrower word sizes). May not be needed on 64-bit systems, but does no harm.

--with-system-zlib

Use the installed zlib library rather than building the included version.

Compile the package:

make tooldir=/usr

The meaning of the make parameter:

tooldir=/usr

Normally, the tooldir (the directory where the executables will ultimately be located) is set to $(exec_prefix)/$(target_alias). For example, x86_64 machines would expand that to /usr/x86_64-pc-linux-gnu. Because this is a custom system, this target-specific directory in /usr is not required. $(exec_prefix)/$(target_alias) would be used if the system was used to cross-compile (for example, compiling a package on an Intel machine that generates code that can be executed on PowerPC machines).

Important

The test suite for Binutils in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make -k check

Install the package:

make tooldir=/usr install

Remove useless static libraries:

rm -fv /usr/lib/lib{bfd,ctf,ctf-nobfd,opcodes}.a

8.18.2. Contents of Binutils

Installed programs: addr2line, ar, as, c++filt, dwp, elfedit, gprof, gprofng, ld, ld.bfd, ld.gold, nm, objcopy, objdump, ranlib, readelf, size, strings, and strip
Installed libraries: libbfd.so, libctf.so, libctf-nobfd.so, and libopcodes.so
Installed directory: /usr/lib/ldscripts

Short Descriptions

addr2line

Translates program addresses to file names and line numbers; given an address and the name of an executable, it uses the debugging information in the executable to determine which source file and line number are associated with the address

ar

Creates, modifies, and extracts from archives

as

An assembler that assembles the output of gcc into object files

c++filt

Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from clashing

dwp

The DWARF packaging utility

elfedit

Updates the ELF header of ELF files

gprof

Displays call graph profile data

gprofng

Gather and analyze performance data

ld

A linker that combines a number of object and archive files into a single file, relocating their data and tying up symbol references

ld.gold

A cut down version of ld that only supports the elf object file format

ld.bfd

Hard link to ld

nm

Lists the symbols occurring in a given object file

objcopy

Translates one type of object file into another

objdump

Displays information about the given object file, with options controlling the particular information to display; the information shown is useful to programmers who are working on the compilation tools

ranlib

Generates an index of the contents of an archive and stores it in the archive; the index lists all of the symbols defined by archive members that are relocatable object files

readelf

Displays information about ELF type binaries

size

Lists the section sizes and the total size for the given object files

strings

Outputs, for each given file, the sequences of printable characters that are of at least the specified length (defaulting to four); for object files, it prints, by default, only the strings from the initializing and loading sections while for other types of files, it scans the entire file

strip

Discards symbols from object files

libbfd

The Binary File Descriptor library

libctf

The Compat ANSI-C Type Format debugging support library

libctf-nobfd

A libctf variant which does not use libbfd functionality

libopcodes

A library for dealing with opcodes—the readable text versions of instructions for the processor; it is used for building utilities like objdump

8.19. GMP-6.2.1

The GMP package contains math libraries. These have useful functions for arbitrary precision arithmetic.

Approximate build time: 0.9 SBU
Required disk space: 53 MB

8.19.1. Installation of GMP

Note

If you are building for 32-bit x86, but you have a CPU which is capable of running 64-bit code and you have specified CFLAGS in the environment, the configure script will attempt to configure for 64-bits and fail. Avoid this by invoking the configure command below with

ABI=32 ./configure ...

Note

The default settings of GMP produce libraries optimized for the host processor. If libraries suitable for processors less capable than the host's CPU are desired, generic libraries can be created by running the following:

cp -v configfsf.guess config.guess
cp -v configfsf.sub   config.sub

Prepare GMP for compilation:

./configure --prefix=/usr    \
            --enable-cxx     \
            --disable-static \
            --docdir=/usr/share/doc/gmp-6.2.1

The meaning of the new configure options:

--enable-cxx

This parameter enables C++ support

--docdir=/usr/share/doc/gmp-6.2.1

This variable specifies the correct place for the documentation.

Compile the package and generate the HTML documentation:

make
make html

Important

The test suite for GMP in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make check 2>&1 | tee gmp-check-log

Caution

The code in gmp is highly optimized for the processor where it is built. Occasionally, the code that detects the processor misidentifies the system capabilities and there will be errors in the tests or other applications using the gmp libraries with the message "Illegal instruction". In this case, gmp should be reconfigured with the option --build=x86_64-pc-linux-gnu and rebuilt.

Ensure that all 197 tests in the test suite passed. Check the results by issuing the following command:

awk '/# PASS:/{total+=$3} ; END{print total}' gmp-check-log

Install the package and its documentation:

make install
make install-html

8.19.2. Contents of GMP

Installed Libraries: libgmp.so and libgmpxx.so
Installed directory: /usr/share/doc/gmp-6.2.1

Short Descriptions

libgmp

Contains precision math functions

libgmpxx

Contains C++ precision math functions

8.20. MPFR-4.1.0

The MPFR package contains functions for multiple precision math.

Approximate build time: 0.8 SBU
Required disk space: 39 MB

8.20.1. Installation of MPFR

Prepare MPFR for compilation:

./configure --prefix=/usr        \
            --disable-static     \
            --enable-thread-safe \
            --docdir=/usr/share/doc/mpfr-4.1.0

Compile the package and generate the HTML documentation:

make
make html

Important

The test suite for MPFR in this section is considered critical. Do not skip it under any circumstances.

Test the results and ensure that all tests passed:

make check

Install the package and its documentation:

make install
make install-html

8.20.2. Contents of MPFR

Installed Libraries: libmpfr.so
Installed directory: /usr/share/doc/mpfr-4.1.0

Short Descriptions

libmpfr

Contains multiple-precision math functions

8.21. MPC-1.2.1

The MPC package contains a library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result.

Approximate build time: 0.3 SBU
Required disk space: 21 MB

8.21.1. Installation of MPC

Prepare MPC for compilation:

./configure --prefix=/usr    \
            --disable-static \
            --docdir=/usr/share/doc/mpc-1.2.1

Compile the package and generate the HTML documentation:

make
make html

To test the results, issue:

make check

Install the package and its documentation:

make install
make install-html

8.21.2. Contents of MPC

Installed Libraries: libmpc.so
Installed Directory: /usr/share/doc/mpc-1.2.1

Short Descriptions

libmpc

Contains complex math functions

8.22. Attr-2.5.1

The attr package contains utilities to administer the extended attributes on filesystem objects.

Approximate build time: less than 0.1 SBU
Required disk space: 4.1 MB

8.22.1. Installation of Attr

Prepare Attr for compilation:

./configure --prefix=/usr     \
            --disable-static  \
            --sysconfdir=/etc \
            --docdir=/usr/share/doc/attr-2.5.1

Compile the package:

make

The tests need to be run on a filesystem that supports extended attributes such as the ext2, ext3, or ext4 filesystems. To test the results, issue:

make check

Install the package:

make install

8.22.2. Contents of Attr

Installed programs: attr, getfattr, and setfattr
Installed library: libattr.so
Installed directories: /usr/include/attr and /usr/share/doc/attr-2.5.1

Short Descriptions

attr

Extends attributes on filesystem objects

getfattr

Gets the extended attributes of filesystem objects

setfattr

Sets the extended attributes of filesystem objects

libattr

Contains the library functions for manipulating extended attributes

8.23. Acl-2.3.1

The Acl package contains utilities to administer Access Control Lists, which are used to define more fine-grained discretionary access rights for files and directories.

Approximate build time: 0.1 SBU
Required disk space: 6.1 MB

8.23.1. Installation of Acl

Prepare Acl for compilation:

./configure --prefix=/usr         \
            --disable-static      \
            --docdir=/usr/share/doc/acl-2.3.1

Compile the package:

make

The Acl tests need to be run on a filesystem that supports access controls after Coreutils has been built with the Acl libraries. If desired, return to this package and run make check after Coreutils has been built later in this chapter.

Install the package:

make install

8.23.2. Contents of Acl

Installed programs: chacl, getfacl, and setfacl
Installed library: libacl.so
Installed directories: /usr/include/acl and /usr/share/doc/acl-2.3.1

Short Descriptions

chacl

Changes the access control list of a file or directory

getfacl

Gets file access control lists

setfacl

Sets file access control lists

libacl

Contains the library functions for manipulating Access Control Lists

8.24. Libcap-2.65

The Libcap package implements the user-space interfaces to the POSIX 1003.1e capabilities available in Linux kernels. These capabilities are a partitioning of the all powerful root privilege into a set of distinct privileges.

Approximate build time: less than 0.1 SBU
Required disk space: 2.7 MB

8.24.1. Installation of Libcap

Prevent static libraries from being installed:

sed -i '/install -m.*STA/d' libcap/Makefile

Compile the package:

make prefix=/usr lib=lib

The meaning of the make option:

lib=lib

This parameter sets the library directory to /usr/lib rather than /usr/lib64 on x86_64. It has no effect on x86.

To test the results, issue:

make test

Install the package:

make prefix=/usr lib=lib install

8.24.2. Contents of Libcap

Installed programs: capsh, getcap, getpcaps, and setcap
Installed library: libcap.so and libpsx.so

Short Descriptions

capsh

A shell wrapper to explore and constrain capability support

getcap

Examines file capabilities

getpcaps

Displays the capabilities on the queried process(es)

setcap

Sets file capabilities

libcap

Contains the library functions for manipulating POSIX 1003.1e capabilities

libpsx

Contains functions to support POSIX semantics for syscalls associated with the pthread library

8.25. Shadow-4.12.2

The Shadow package contains programs for handling passwords in a secure way.

Approximate build time: 0.2 SBU
Required disk space: 46 MB

8.25.1. Installation of Shadow

Note

If you would like to enforce the use of strong passwords, refer to https://www.linuxfromscratch.org/blfs/view/11.2/postlfs/cracklib.html for installing CrackLib prior to building Shadow. Then add --with-libcrack to the configure command below.

Disable the installation of the groups program and its man pages, as Coreutils provides a better version. Also, prevent the installation of manual pages that were already installed in Section 8.3, “Man-pages-5.13”:

sed -i 's/groups$(EXEEXT) //' src/Makefile.in
find man -name Makefile.in -exec sed -i 's/groups\.1 / /'   {} \;
find man -name Makefile.in -exec sed -i 's/getspnam\.3 / /' {} \;
find man -name Makefile.in -exec sed -i 's/passwd\.5 / /'   {} \;

Instead of using the default crypt method, use the more secure SHA-512 method of password encryption, which also allows passwords longer than 8 characters. It is also necessary to change the obsolete /var/spool/mail location for user mailboxes that Shadow uses by default to the /var/mail location used currently. And, get rid of /bin and /sbin from PATH, since they are simply symlinks to their counterpart in /usr.

Note

If /bin and/or /sbin are preferred to be left over in PATH for some reason, modify PATH in .bashrc after LFS is built.

sed -e 's:#ENCRYPT_METHOD DES:ENCRYPT_METHOD SHA512:' \
    -e 's:/var/spool/mail:/var/mail:'                 \
    -e '/PATH=/{s@/sbin:@@;s@/bin:@@}'                \
    -i etc/login.defs

Note

If you chose to build Shadow with Cracklib support, run the following:

sed -i 's:DICTPATH.*:DICTPATH\t/lib/cracklib/pw_dict:' etc/login.defs

Prepare Shadow for compilation:

touch /usr/bin/passwd
./configure --sysconfdir=/etc \
            --disable-static  \
            --with-group-name-max-length=32

The meaning of the configure option:

touch /usr/bin/passwd

The file /usr/bin/passwd needs to exist because its location is hardcoded in some programs, and if it does not exist, the default location is not right.

--with-group-name-max-length=32

The maximum user name is 32 characters. Make the maximum group name the same.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make exec_prefix=/usr install
make -C man install-man

8.25.2. Configuring Shadow

This package contains utilities to add, modify, and delete users and groups; set and change their passwords; and perform other administrative tasks. For a full explanation of what password shadowing means, see the doc/HOWTO file within the unpacked source tree. If using Shadow support, keep in mind that programs which need to verify passwords (display managers, FTP programs, pop3 daemons, etc.) must be Shadow-compliant. That is, they need to be able to work with shadowed passwords.

To enable shadowed passwords, run the following command:

pwconv

To enable shadowed group passwords, run:

grpconv

Shadow's default configuration for the useradd utility has a few caveats that need some explanation. First, the default action for the useradd utility is to create the user and a group of the same name as the user. By default the user ID (UID) and group ID (GID) numbers will begin with 1000. This means if you don't pass parameters to useradd, each user will be a member of a unique group on the system. If this behavior is undesirable, you'll need to pass one of the -g or -N parameter to useradd or to change the setting of USERGROUPS_ENAB in /etc/login.defs. See useradd(8) for more information.

Second, to change the default parameters, the file /etc/default/useradd needs to be created and tailored to suit your particular needs. Create it with:

mkdir -p /etc/default
useradd -D --gid 999

/etc/default/useradd Parameter Explanations

GROUP=999

This parameter sets the beginning of the group numbers used in the /etc/group file. The particular value 999 comes from the --gid parameter above. You can modify it to anything you desire. Note that useradd will never reuse a UID or GID. If the number identified in this parameter is used, it will use the next available number. Note also that if you don't have a group with an ID equal to this number on your system the first time you use useradd without the -g parameter, you will get a message displayed on the terminal that says: useradd: unknown GID 999, although the account is correctly created. That is why we have created the group users with this group ID in Section 7.6, “Creating Essential Files and Symlinks”.

CREATE_MAIL_SPOOL=yes

This parameter causes useradd to create a mailbox file for the newly created user. useradd will make the group ownership of this file to the mail group with 0660 permissions. If you would prefer that these mailbox files are not created by useradd, issue the following command:

sed -i '/MAIL/s/yes/no/' /etc/default/useradd

8.25.3. Setting the root password

Choose a password for user root and set it by running:

passwd root

8.25.4. Contents of Shadow

Installed programs: chage, chfn, chgpasswd, chpasswd, chsh, expiry, faillog, getsubids, gpasswd, groupadd, groupdel, groupmems, groupmod, grpck, grpconv, grpunconv, lastlog, login, logoutd, newgidmap, newgrp, newuidmap, newusers, nologin, passwd, pwck, pwconv, pwunconv, sg (link to newgrp), su, useradd, userdel, usermod, vigr (link to vipw), and vipw
Installed directory: /etc/default
Installed libraries: libsubid.so

Short Descriptions

chage

Used to change the maximum number of days between obligatory password changes

chfn

Used to change a user's full name and other information

chgpasswd

Used to update group passwords in batch mode

chpasswd

Used to update user passwords in batch mode

chsh

Used to change a user's default login shell

expiry

Checks and enforces the current password expiration policy

faillog

Is used to examine the log of login failures, to set a maximum number of failures before an account is blocked, or to reset the failure count

getsubids

Is used to list the subordinate id ranges for a user

gpasswd

Is used to add and delete members and administrators to groups

groupadd

Creates a group with the given name

groupdel

Deletes the group with the given name

groupmems

Allows a user to administer his/her own group membership list without the requirement of super user privileges.

groupmod

Is used to modify the given group's name or GID

grpck

Verifies the integrity of the group files /etc/group and /etc/gshadow

grpconv

Creates or updates the shadow group file from the normal group file

grpunconv

Updates /etc/group from /etc/gshadow and then deletes the latter

lastlog

Reports the most recent login of all users or of a given user

login

Is used by the system to let users sign on

logoutd

Is a daemon used to enforce restrictions on log-on time and ports

newgidmap

Is used to set the gid mapping of a user namespace

newgrp

Is used to change the current GID during a login session

newuidmap

Is used to set the uid mapping of a user namespace

newusers

Is used to create or update an entire series of user accounts

nologin

Displays a message that an account is not available; it is designed to be used as the default shell for accounts that have been disabled

passwd

Is used to change the password for a user or group account

pwck

Verifies the integrity of the password files /etc/passwd and /etc/shadow

pwconv

Creates or updates the shadow password file from the normal password file

pwunconv

Updates /etc/passwd from /etc/shadow and then deletes the latter

sg

Executes a given command while the user's GID is set to that of the given group

su

Runs a shell with substitute user and group IDs

useradd

Creates a new user with the given name, or updates the default new-user information

userdel

Deletes the given user account

usermod

Is used to modify the given user's login name, User Identification (UID), shell, initial group, home directory, etc.

vigr

Edits the /etc/group or /etc/gshadow files

vipw

Edits the /etc/passwd or /etc/shadow files

libsubid

library for process subordinate id ranges for users

8.26. GCC-12.2.0

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 160 SBU (with tests)
Required disk space: 5.1 GB

8.26.1. Installation of GCC

If building on x86_64, change the default directory name for 64-bit libraries to lib:

case $(uname -m) in
  x86_64)
    sed -e '/m64=/s/lib64/lib/' \
        -i.orig gcc/config/i386/t-linux64
  ;;
esac

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd       build

Prepare GCC for compilation:

../configure --prefix=/usr            \
             LD=ld                    \
             --enable-languages=c,c++ \
             --disable-multilib       \
             --disable-bootstrap      \
             --with-system-zlib

Note that for other programming languages there are some prerequisites that are not yet available. See the BLFS Book GCC page for instructions on how to build all of GCC's supported languages.

The meaning of the new configure parameters:

LD=ld

This parameter makes the configure script use the ld installed by the binutils built earlier in this chapter, rather than the cross-built version which would otherwise be used.

--with-system-zlib

This switch tells GCC to link to the system installed copy of the zlib library, rather than its own internal copy.

Compile the package:

make

Important

In this section, the test suite for GCC is considered important, but it takes a long time. First time builders are encouraged to not skip it. The time to run the tests can be reduced significantly by adding -jx to the make command below where x is the number of cores on your system.

One set of tests in the GCC test suite is known to exhaust the default stack, so increase the stack size prior to running the tests:

ulimit -s 32768

Test the results as a non-privileged user, but do not stop at errors:

chown -Rv tester .
su tester -c "PATH=$PATH make -k check"

To receive a summary of the test suite results, run:

../contrib/test_summary

For only the summaries, pipe the output through grep -A7 Summ.

Results can be compared with those located at https://www.linuxfromscratch.org/lfs/build-logs/11.2/ and https://gcc.gnu.org/ml/gcc-testresults/.

In g++, four tests related to PR100400 are known to be reported as both XPASS and FAIL. It's because the test file for this known issue is not well written.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have not resolved them yet. Unless the test results are vastly different from those at the above URL, it is safe to continue.

Install the package:

make install

The GCC build directory is owned by tester now and the ownership of the installed header directory (and its content) will be incorrect. Change the ownership to root user and group:

chown -v -R root:root \
    /usr/lib/gcc/$(gcc -dumpmachine)/12.2.0/include{,-fixed}

Create a symlink required by the FHS for "historical" reasons.

ln -svr /usr/bin/cpp /usr/lib

Add a compatibility symlink to enable building programs with Link Time Optimization (LTO):

ln -sfv ../../libexec/gcc/$(gcc -dumpmachine)/12.2.0/liblto_plugin.so \
        /usr/lib/bfd-plugins/

Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as expected. We do this by performing some sanity checks:

echo 'int main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

There should be no errors, and the output of the last command will be (allowing for platform-specific differences in the dynamic linker name):

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

Now make sure that we're setup to use the correct start files:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

The output of the last command should be:

/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/../../../../lib/crt1.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/../../../../lib/crti.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/../../../../lib/crtn.o succeeded

Depending on your machine architecture, the above may differ slightly. The difference will be the name of the directory after /usr/lib/gcc. The important thing to look for here is that gcc has found all three crt*.o files under the /usr/lib directory.

Verify that the compiler is searching for the correct header files:

grep -B4 '^ /usr/include' dummy.log

This command should return the following output:

#include <...> search starts here:
 /usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/include
 /usr/local/include
 /usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/include-fixed
 /usr/include

Again, the directory named after your target triplet may be different than the above, depending on your system architecture.

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

References to paths that have components with '-linux-gnu' should be ignored, but otherwise the output of the last command should be:

SEARCH_DIR("/usr/x86_64-pc-linux-gnu/lib64")
SEARCH_DIR("/usr/local/lib64")
SEARCH_DIR("/lib64")
SEARCH_DIR("/usr/lib64")
SEARCH_DIR("/usr/x86_64-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

A 32-bit system may see a few different directories. For example, here is the output from an i686 machine:

SEARCH_DIR("/usr/i686-pc-linux-gnu/lib32")
SEARCH_DIR("/usr/local/lib32")
SEARCH_DIR("/lib32")
SEARCH_DIR("/usr/lib32")
SEARCH_DIR("/usr/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

The output of the last command should be:

attempt to open /usr/lib/libc.so.6 succeeded

Make sure GCC is using the correct dynamic linker:

grep found dummy.log

The output of the last command should be (allowing for platform-specific differences in dynamic linker name):

found ld-linux-x86-64.so.2 at /usr/lib/ld-linux-x86-64.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate and retrace the steps to find out where the problem is and correct it. Any issues will need to be resolved before continuing with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Finally, move a misplaced file:

mkdir -pv /usr/share/gdb/auto-load/usr/lib
mv -v /usr/lib/*gdb.py /usr/share/gdb/auto-load/usr/lib

8.26.2. Contents of GCC

Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gcc-ar, gcc-nm, gcc-ranlib, gcov, gcov-dump, gcov-tool, and lto-dump
Installed libraries: libasan.{a,so}, libatomic.{a,so}, libcc1.so, libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a, libgomp.{a,so}, libitm.{a,so}, liblsan.{a,so}, liblto_plugin.so, libquadmath.{a,so}, libssp.{a,so}, libssp_nonshared.a, libstdc++.{a,so}, libstdc++fs.a, libsupc++.a, libtsan.{a,so}, and libubsan.{a,so}
Installed directories: /usr/include/c++, /usr/lib/gcc, /usr/libexec/gcc, and /usr/share/gcc-12.2.0

Short Descriptions

c++

The C++ compiler

cc

The C compiler

cpp

The C preprocessor; it is used by the compiler to expand the #include, #define, and similar statements in the source files

g++

The C++ compiler

gcc

The C compiler

gcc-ar

A wrapper around ar that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options

gcc-nm

A wrapper around nm that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options

gcc-ranlib

A wrapper around ranlib that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options

gcov

A coverage testing tool; it is used to analyze programs to determine where optimizations will have the most effect

gcov-dump

Offline gcda and gcno profile dump tool

gcov-tool

Offline gcda profile processing tool

lto-dump

Tool for dumping object files produced by GCC with LTO enabled

libasan

The Address Sanitizer runtime library

libatomic

GCC atomic built-in runtime library

libcc1

The C preprocessing library

libgcc

Contains run-time support for gcc

libgcov

This library is linked in to a program when GCC is instructed to enable profiling

libgomp

GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming in C/C++ and Fortran

libitm

The GNU transactional memory library

liblsan

The Leak Sanitizer runtime library

liblto_plugin

GCC's LTO plugin allows binutils to process object files produced by GCC with LTO enabled

libquadmath

GCC Quad Precision Math Library API

libssp

Contains routines supporting GCC's stack-smashing protection functionality

libstdc++

The standard C++ library

libstdc++fs

ISO/IEC TS 18822:2015 Filesystem library

libsupc++

Provides supporting routines for the C++ programming language

libtsan

The Thread Sanitizer runtime library

libubsan

The Undefined Behavior Sanitizer runtime library

8.27. Pkg-config-0.29.2

The pkg-config package contains a tool for passing the include path and/or library paths to build tools during the configure and make phases of package installations.

Approximate build time: 0.3 SBU
Required disk space: 29 MB

8.27.1. Installation of Pkg-config

Prepare Pkg-config for compilation:

./configure --prefix=/usr              \
            --with-internal-glib       \
            --disable-host-tool        \
            --docdir=/usr/share/doc/pkg-config-0.29.2

The meaning of the new configure options:

--with-internal-glib

This will allow pkg-config to use its internal version of Glib because an external version is not available in LFS.

--disable-host-tool

This option disables the creation of an undesired hard link to the pkg-config program.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.27.2. Contents of Pkg-config

Installed program: pkg-config
Installed directory: /usr/share/doc/pkg-config-0.29.2

Short Descriptions

pkg-config

Returns meta information for the specified library or package

8.28. Ncurses-6.3

The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.4 SBU
Required disk space: 45 MB

8.28.1. Installation of Ncurses

Prepare Ncurses for compilation:

./configure --prefix=/usr           \
            --mandir=/usr/share/man \
            --with-shared           \
            --without-debug         \
            --without-normal        \
            --with-cxx-shared       \
            --enable-pc-files       \
            --enable-widec          \
            --with-pkg-config-libdir=/usr/lib/pkgconfig

The meaning of the new configure options:

--with-shared

This makes Ncurses build and install shared C libraries.

--without-normal

This prevents Ncurses building and installing static C libraries.

--without-debug

This prevents Ncurses building and installing debug libraries.

--with-cxx-shared

This makes Ncurses build and install shared C++ bindings. It also prevents it building and installing static C++ bindings.

--enable-pc-files

This switch generates and installs .pc files for pkg-config.

--enable-widec

This switch causes wide-character libraries (e.g., libncursesw.so.6.3) to be built instead of normal ones (e.g., libncurses.so.6.3). These wide-character libraries are usable in both multibyte and traditional 8-bit locales, while normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are source-compatible, but not binary-compatible.

Compile the package:

make

This package has a test suite, but it can only be run after the package has been installed. The tests reside in the test/ directory. See the README file in that directory for further details.

The installation of this package will overwrite libncursesw.so.6.3 in-place. It may crash the shell process which is using code and data from the library file. Install the package with DESTDIR, and replace the library file correctly using install command. A useless static archive which is not handled by configure is also removed:

make DESTDIR=$PWD/dest install
install -vm755 dest/usr/lib/libncursesw.so.6.3 /usr/lib
rm -v  dest/usr/lib/libncursesw.so.6.3
cp -av dest/* /

Many applications still expect the linker to be able to find non-wide-character Ncurses libraries. Trick such applications into linking with wide-character libraries by means of symlinks and linker scripts:

for lib in ncurses form panel menu ; do
    rm -vf                    /usr/lib/lib${lib}.so
    echo "INPUT(-l${lib}w)" > /usr/lib/lib${lib}.so
    ln -sfv ${lib}w.pc        /usr/lib/pkgconfig/${lib}.pc
done

Finally, make sure that old applications that look for -lcurses at build time are still buildable:

rm -vf                     /usr/lib/libcursesw.so
echo "INPUT(-lncursesw)" > /usr/lib/libcursesw.so
ln -sfv libncurses.so      /usr/lib/libcurses.so

If desired, install the Ncurses documentation:

mkdir -pv      /usr/share/doc/ncurses-6.3
cp -v -R doc/* /usr/share/doc/ncurses-6.3

Note

The instructions above don't create non-wide-character Ncurses libraries since no package installed by compiling from sources would link against them at runtime. However, the only known binary-only applications that link against non-wide-character Ncurses libraries require version 5. If you must have such libraries because of some binary-only application or to be compliant with LSB, build the package again with the following commands:

make distclean
./configure --prefix=/usr    \
            --with-shared    \
            --without-normal \
            --without-debug  \
            --without-cxx-binding \
            --with-abi-version=5
make sources libs
cp -av lib/lib*.so.5* /usr/lib

8.28.2. Contents of Ncurses

Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), ncursesw6-config, reset (link to tset), tabs, tic, toe, tput, and tset
Installed libraries: libcursesw.so (symlink and linker script to libncursesw.so), libformw.so, libmenuw.so, libncursesw.so, libpanelw.so, and their non-wide-character counterparts without "w" in the library names.
Installed directories: /usr/share/tabset, /usr/share/terminfo, and /usr/share/doc/ncurses-6.3

Short Descriptions

captoinfo

Converts a termcap description into a terminfo description

clear

Clears the screen, if possible

infocmp

Compares or prints out terminfo descriptions

infotocap

Converts a terminfo description into a termcap description

ncursesw6-config

Provides configuration information for ncurses

reset

Reinitializes a terminal to its default values

tabs

Clears and sets tab stops on a terminal

tic

The terminfo entry-description compiler that translates a terminfo file from source format into the binary format needed for the ncurses library routines [A terminfo file contains information on the capabilities of a certain terminal.]

toe

Lists all available terminal types, giving the primary name and description for each

tput

Makes the values of terminal-dependent capabilities available to the shell; it can also be used to reset or initialize a terminal or report its long name

tset

Can be used to initialize terminals

libcursesw

A link to libncursesw

libncursesw

Contains functions to display text in many complex ways on a terminal screen; a good example of the use of these functions is the menu displayed during the kernel's make menuconfig

libformw

Contains functions to implement forms

libmenuw

Contains functions to implement menus

libpanelw

Contains functions to implement panels

8.29. Sed-4.8

The Sed package contains a stream editor.

Approximate build time: 0.4 SBU
Required disk space: 31 MB

8.29.1. Installation of Sed

Prepare Sed for compilation:

./configure --prefix=/usr

Compile the package and generate the HTML documentation:

make
make html

To test the results, issue:

chown -Rv tester .
su tester -c "PATH=$PATH make check"

Install the package and its documentation:

make install
install -d -m755           /usr/share/doc/sed-4.8
install -m644 doc/sed.html /usr/share/doc/sed-4.8

8.29.2. Contents of Sed

Installed program: sed
Installed directory: /usr/share/doc/sed-4.8

Short Descriptions

sed

Filters and transforms text files in a single pass

8.30. Psmisc-23.5

The Psmisc package contains programs for displaying information about running processes.

Approximate build time: less than 0.1 SBU
Required disk space: 5.8 MB

8.30.1. Installation of Psmisc

Prepare Psmisc for compilation:

./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

8.30.2. Contents of Psmisc

Installed programs: fuser, killall, peekfd, prtstat, pslog, pstree, and pstree.x11 (link to pstree)

Short Descriptions

fuser

Reports the Process IDs (PIDs) of processes that use the given files or file systems

killall

Kills processes by name; it sends a signal to all processes running any of the given commands

peekfd

Peek at file descriptors of a running process, given its PID

prtstat

Prints information about a process

pslog

Reports current logs path of a process

pstree

Displays running processes as a tree

pstree.x11

Same as pstree, except that it waits for confirmation before exiting

8.31. Gettext-0.21

The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 2.7 SBU
Required disk space: 235 MB

8.31.1. Installation of Gettext

Prepare Gettext for compilation:

./configure --prefix=/usr    \
            --disable-static \
            --docdir=/usr/share/doc/gettext-0.21

Compile the package:

make

To test the results (this takes a long time, around 3 SBUs), issue:

make check

Install the package:

make install
chmod -v 0755 /usr/lib/preloadable_libintl.so

8.31.2. Contents of Gettext

Installed programs: autopoint, envsubst, gettext, gettext.sh, gettextize, msgattrib, msgcat, msgcmp, msgcomm, msgconv, msgen, msgexec, msgfilter, msgfmt, msggrep, msginit, msgmerge, msgunfmt, msguniq, ngettext, recode-sr-latin, and xgettext
Installed libraries: libasprintf.so, libgettextlib.so, libgettextpo.so, libgettextsrc.so, libtextstyle.so, and preloadable_libintl.so
Installed directories: /usr/lib/gettext, /usr/share/doc/gettext-0.21, /usr/share/gettext, and /usr/share/gettext-0.19.8

Short Descriptions

autopoint

Copies standard Gettext infrastructure files into a source package

envsubst

Substitutes environment variables in shell format strings

gettext

Translates a natural language message into the user's language by looking up the translation in a message catalog

gettext.sh

Primarily serves as a shell function library for gettext

gettextize

Copies all standard Gettext files into the given top-level directory of a package to begin internationalizing it

msgattrib

Filters the messages of a translation catalog according to their attributes and manipulates the attributes

msgcat

Concatenates and merges the given .po files

msgcmp

Compares two .po files to check that both contain the same set of msgid strings

msgcomm

Finds the messages that are common to the given .po files

msgconv

Converts a translation catalog to a different character encoding

msgen

Creates an English translation catalog

msgexec

Applies a command to all translations of a translation catalog

msgfilter

Applies a filter to all translations of a translation catalog

msgfmt

Generates a binary message catalog from a translation catalog

msggrep

Extracts all messages of a translation catalog that match a given pattern or belong to some given source files

msginit

Creates a new .po file, initializing the meta information with values from the user's environment

msgmerge

Combines two raw translations into a single file

msgunfmt

Decompiles a binary message catalog into raw translation text

msguniq

Unifies duplicate translations in a translation catalog

ngettext

Displays native language translations of a textual message whose grammatical form depends on a number

recode-sr-latin

Recodes Serbian text from Cyrillic to Latin script

xgettext

Extracts the translatable message lines from the given source files to make the first translation template

libasprintf

defines the autosprintf class, which makes C formatted output routines usable in C++ programs, for use with the <string> strings and the <iostream> streams

libgettextlib

a private library containing common routines used by the various Gettext programs; these are not intended for general use

libgettextpo

Used to write specialized programs that process .po files; this library is used when the standard applications shipped with Gettext (such as msgcomm, msgcmp, msgattrib, and msgen) will not suffice

libgettextsrc

A private library containing common routines used by the various Gettext programs; these are not intended for general use

libtextstyle

Text styling library

preloadable_libintl

A library, intended to be used by LD_PRELOAD that assists libintl in logging untranslated messages

8.32. Bison-3.8.2

The Bison package contains a parser generator.

Approximate build time: 8.7 SBU
Required disk space: 63 MB

8.32.1. Installation of Bison

Prepare Bison for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/bison-3.8.2

Compile the package:

make

To test the results (about 5.5 SBU), issue:

make check

Install the package:

make install

8.32.2. Contents of Bison

Installed programs: bison and yacc
Installed library: liby.a
Installed directory: /usr/share/bison

Short Descriptions

bison

Generates, from a series of rules, a program for analyzing the structure of text files; Bison is a replacement for Yacc (Yet Another Compiler Compiler)

yacc

A wrapper for bison, meant for programs that still call yacc instead of bison; it calls bison with the -y option

liby

The Yacc library containing implementations of Yacc-compatible yyerror and main functions; this library is normally not very useful, but POSIX requires it

8.33. Grep-3.7

The Grep package contains programs for searching through the contents of files.

Approximate build time: 0.8 SBU
Required disk space: 37 MB

8.33.1. Installation of Grep

Prepare Grep for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.33.2. Contents of Grep

Installed programs: egrep, fgrep, and grep

Short Descriptions

egrep

Prints lines matching an extended regular expression. It is obsolete, use grep -E instead

fgrep

Prints lines matching a list of fixed strings. It is obsolete, use grep -F instead

grep

Prints lines matching a basic regular expression

8.34. Bash-5.1.16

The Bash package contains the Bourne-Again SHell.

Approximate build time: 1.4 SBU
Required disk space: 50 MB

8.34.1. Installation of Bash

Prepare Bash for compilation:

./configure --prefix=/usr                      \
            --docdir=/usr/share/doc/bash-5.1.16 \
            --without-bash-malloc              \
            --with-installed-readline

The meaning of the new configure option:

--with-installed-readline

This option tells Bash to use the readline library that is already installed on the system rather than using its own readline version.

Compile the package:

make

Skip down to Install the package if not running the test suite.

To prepare the tests, ensure that the tester user can write to the sources tree:

chown -Rv tester .

The testsuite of the package is designed to be run as a non-root user that owns the terminal connected to standard input. To satisfy the requirement, spawn a new pseudo terminal using Expect and run the tests as the tester user:

su -s /usr/bin/expect tester << EOF
set timeout -1
spawn make tests
expect eof
lassign [wait] _ _ _ value
exit $value
EOF

Install the package:

make install

Run the newly compiled bash program (replacing the one that is currently being executed):

exec /usr/bin/bash --login

8.34.2. Contents of Bash

Installed programs: bash, bashbug, and sh (link to bash)
Installed directory: /usr/include/bash, /usr/lib/bash, and /usr/share/doc/bash-5.1.16

Short Descriptions

bash

A widely-used command interpreter; it performs many types of expansions and substitutions on a given command line before executing it, thus making this interpreter a powerful tool

bashbug

A shell script to help the user compose and mail standard formatted bug reports concerning bash

sh

A symlink to the bash program; when invoked as sh, bash tries to mimic the startup behavior of historical versions of sh as closely as possible, while conforming to the POSIX standard as well

8.35. Libtool-2.4.7

The Libtool package contains the GNU generic library support script. It wraps the complexity of using shared libraries in a consistent, portable interface.

Approximate build time: 1.5 SBU
Required disk space: 43 MB

8.35.1. Installation of Libtool

Prepare Libtool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Note

The test time for libtool can be reduced significantly on a system with multiple cores. To do this, append TESTSUITEFLAGS=-j<N> to the line above. For instance, using -j4 can reduce the test time by over 60 percent.

Five tests are known to fail in the LFS build environment due to a circular dependency, but all tests pass if rechecked after automake is installed.

Install the package:

make install

Remove a useless static library:

rm -fv /usr/lib/libltdl.a

8.35.2. Contents of Libtool

Installed programs: libtool and libtoolize
Installed libraries: libltdl.so
Installed directories: /usr/include/libltdl and /usr/share/libtool

Short Descriptions

libtool

Provides generalized library-building support services

libtoolize

Provides a standard way to add libtool support to a package

libltdl

Hides the various difficulties of dlopening libraries

8.36. GDBM-1.23

The GDBM package contains the GNU Database Manager. It is a library of database functions that use extensible hashing and works similar to the standard UNIX dbm. The library provides primitives for storing key/data pairs, searching and retrieving the data by its key and deleting a key along with its data.

Approximate build time: 0.1 SBU
Required disk space: 13 MB

8.36.1. Installation of GDBM

Prepare GDBM for compilation:

./configure --prefix=/usr    \
            --disable-static \
            --enable-libgdbm-compat

The meaning of the configure option:

--enable-libgdbm-compat

This switch enables building the libgdbm compatibility library. Some packages outside of LFS may require the older DBM routines it provides.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.36.2. Contents of GDBM

Installed programs: gdbm_dump, gdbm_load, and gdbmtool
Installed libraries: libgdbm.so and libgdbm_compat.so

Short Descriptions

gdbm_dump

Dumps a GDBM database to a file

gdbm_load

Recreates a GDBM database from a dump file

gdbmtool

Tests and modifies a GDBM database

libgdbm

Contains functions to manipulate a hashed database

libgdbm_compat

Compatibility library containing older DBM functions

8.37. Gperf-3.1

Gperf generates a perfect hash function from a key set.

Approximate build time: less than 0.1 SBU
Required disk space: 6.0 MB

8.37.1. Installation of Gperf

Prepare Gperf for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/gperf-3.1

Compile the package:

make

The tests are known to fail if running multiple simultaneous tests (-j option greater than 1). To test the results, issue:

make -j1 check

Install the package:

make install

8.37.2. Contents of Gperf

Installed program: gperf
Installed directory: /usr/share/doc/gperf-3.1

Short Descriptions

gperf

Generates a perfect hash from a key set

8.38. Expat-2.4.8

The Expat package contains a stream oriented C library for parsing XML.

Approximate build time: 0.1 SBU
Required disk space: 12 MB

8.38.1. Installation of Expat

Prepare Expat for compilation:

./configure --prefix=/usr    \
            --disable-static \
            --docdir=/usr/share/doc/expat-2.4.8

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

If desired, install the documentation:

install -v -m644 doc/*.{html,css} /usr/share/doc/expat-2.4.8

8.38.2. Contents of Expat

Installed program: xmlwf
Installed libraries: libexpat.so
Installed directory: /usr/share/doc/expat-2.4.8

Short Descriptions

xmlwf

Is a non-validating utility to check whether or not XML documents are well formed

libexpat

Contains API functions for parsing XML

8.39. Inetutils-2.3

The Inetutils package contains programs for basic networking.

Approximate build time: 0.3 SBU
Required disk space: 31 MB

8.39.1. Installation of Inetutils

Prepare Inetutils for compilation:

./configure --prefix=/usr        \
            --bindir=/usr/bin    \
            --localstatedir=/var \
            --disable-logger     \
            --disable-whois      \
            --disable-rcp        \
            --disable-rexec      \
            --disable-rlogin     \
            --disable-rsh        \
            --disable-servers

The meaning of the configure options:

--disable-logger

This option prevents Inetutils from installing the logger program, which is used by scripts to pass messages to the System Log Daemon. Do not install it because Util-linux installs a more recent version.

--disable-whois

This option disables the building of the Inetutils whois client, which is out of date. Instructions for a better whois client are in the BLFS book.

--disable-r*

These parameters disable building obsolete programs that should not be used due to security issues. The functions provided by these programs can be provided by the openssh package in the BLFS book.

--disable-servers

This disables the installation of the various network servers included as part of the Inetutils package. These servers are deemed not appropriate in a basic LFS system. Some are insecure by nature and are only considered safe on trusted networks. Note that better replacements are available for many of these servers.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Move a program to the proper location:

mv -v /usr/{,s}bin/ifconfig

8.39.2. Contents of Inetutils

Installed programs: dnsdomainname, ftp, ifconfig, hostname, ping, ping6, talk, telnet, tftp, and traceroute

Short Descriptions

dnsdomainname

Show the system's DNS domain name

ftp

Is the file transfer protocol program

hostname

Reports or sets the name of the host

ifconfig

Manages network interfaces

ping

Sends echo-request packets and reports how long the replies take

ping6

A version of ping for IPv6 networks

talk

Is used to chat with another user

telnet

An interface to the TELNET protocol

tftp

A trivial file transfer program

traceroute

Traces the route your packets take from the host you are working on to another host on a network, showing all the intermediate hops (gateways) along the way

8.40. Less-590

The Less package contains a text file viewer.

Approximate build time: less than 0.1 SBU
Required disk space: 4.2 MB

8.40.1. Installation of Less

Prepare Less for compilation:

./configure --prefix=/usr --sysconfdir=/etc

The meaning of the configure options:

--sysconfdir=/etc

This option tells the programs created by the package to look in /etc for the configuration files.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

8.40.2. Contents of Less

Installed programs: less, lessecho, and lesskey

Short Descriptions

less

A file viewer or pager; it displays the contents of the given file, letting the user scroll, find strings, and jump to marks

lessecho

Needed to expand meta-characters, such as * and ?, in filenames on Unix systems

lesskey

Used to specify the key bindings for less

8.41. Perl-5.36.0

The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 9.4 SBU
Required disk space: 236 MB

8.41.1. Installation of Perl

This version of Perl now builds the Compress::Raw::Zlib and Compress::Raw::BZip2 modules. By default Perl will use an internal copy of the sources for the build. Issue the following command so that Perl will use the libraries installed on the system:

export BUILD_ZLIB=False
export BUILD_BZIP2=0

To have full control over the way Perl is set up, you can remove the -des options from the following command and hand-pick the way this package is built. Alternatively, use the command exactly as below to use the defaults that Perl auto-detects:

sh Configure -des                                         \
             -Dprefix=/usr                                \
             -Dvendorprefix=/usr                          \
             -Dprivlib=/usr/lib/perl5/5.36/core_perl      \
             -Darchlib=/usr/lib/perl5/5.36/core_perl      \
             -Dsitelib=/usr/lib/perl5/5.36/site_perl      \
             -Dsitearch=/usr/lib/perl5/5.36/site_perl     \
             -Dvendorlib=/usr/lib/perl5/5.36/vendor_perl  \
             -Dvendorarch=/usr/lib/perl5/5.36/vendor_perl \
             -Dman1dir=/usr/share/man/man1                \
             -Dman3dir=/usr/share/man/man3                \
             -Dpager="/usr/bin/less -isR"                 \
             -Duseshrplib                                 \
             -Dusethreads

The meaning of the configure options:

-Dvendorprefix=/usr

This ensures perl knows how to tell packages where they should install their perl modules.

-Dpager="/usr/bin/less -isR"

This ensures that less is used instead of more.

-Dman1dir=/usr/share/man/man1 -Dman3dir=/usr/share/man/man3

Since Groff is not installed yet, Configure thinks that we do not want man pages for Perl. Issuing these parameters overrides this decision.

-Duseshrplib

Build a shared libperl needed by some perl modules.

-Dusethreads

Build perl with support for threads.

-Dprivlib,-Darchlib,-Dsitelib,...

These settings define where Perl is looking for installed modules. The LFS editors chose to put them in a directory structure based on the Major.Minor version of Perl (5.36) which allows upgrading Perl to newer Patch levels (5.36.0) without the need to reinstall all of the modules again.

Compile the package:

make

To test the results (approximately 11 SBU), issue:

make test

Install the package and clean up:

make install
unset BUILD_ZLIB BUILD_BZIP2

8.41.2. Contents of Perl

Installed programs: corelist, cpan, enc2xs, encguess, h2ph, h2xs, instmodsh, json_pp, libnetcfg, perl, perl5.36.0 (hard link to perl), perlbug, perldoc, perlivp, perlthanks (hard link to perlbug), piconv, pl2pm, pod2html, pod2man, pod2text, pod2usage, podchecker, podselect, prove, ptar, ptardiff, ptargrep, shasum, splain, xsubpp, and zipdetails
Installed libraries: Many which cannot all be listed here
Installed directory: /usr/lib/perl5

Short Descriptions

corelist

A commandline frontend to Module::CoreList

cpan

Interact with the Comprehensive Perl Archive Network (CPAN) from the command line

enc2xs

Builds a Perl extension for the Encode module from either Unicode Character Mappings or Tcl Encoding Files

encguess

Guess the encoding type of one or several files

h2ph

Converts .h C header files to .ph Perl header files

h2xs

Converts .h C header files to Perl extensions

instmodsh

Shell script for examining installed Perl modules, and can create a tarball from an installed module

json_pp

Converts data between certain input and output formats

libnetcfg

Can be used to configure the libnet Perl module

perl

Combines some of the best features of C, sed, awk and sh into a single swiss-army language

perl5.36.0

A hard link to perl

perlbug

Used to generate bug reports about Perl, or the modules that come with it, and mail them

perldoc

Displays a piece of documentation in pod format that is embedded in the Perl installation tree or in a Perl script

perlivp

The Perl Installation Verification Procedure; it can be used to verify that Perl and its libraries have been installed correctly

perlthanks

Used to generate thank you messages to mail to the Perl developers

piconv

A Perl version of the character encoding converter iconv

pl2pm

A rough tool for converting Perl4 .pl files to Perl5 .pm modules

pod2html

Converts files from pod format to HTML format

pod2man

Converts pod data to formatted *roff input

pod2text

Converts pod data to formatted ASCII text

pod2usage

Prints usage messages from embedded pod docs in files

podchecker

Checks the syntax of pod format documentation files

podselect

Displays selected sections of pod documentation

prove

Command line tool for running tests against the Test::Harness module

ptar

A tar-like program written in Perl

ptardiff

A Perl program that compares an extracted archive with an unextracted one

ptargrep

A Perl program that applies pattern matching to the contents of files in a tar archive

shasum

Prints or checks SHA checksums

splain

Is used to force verbose warning diagnostics in Perl

xsubpp

Converts Perl XS code into C code

zipdetails

Displays details about the internal structure of a Zip file

8.42. XML::Parser-2.46

The XML::Parser module is a Perl interface to James Clark's XML parser, Expat.

Approximate build time: less than 0.1 SBU
Required disk space: 2.3 MB

8.42.1. Installation of XML::Parser

Prepare XML::Parser for compilation:

perl Makefile.PL

Compile the package:

make

To test the results, issue:

make test

Install the package:

make install

8.42.2. Contents of XML::Parser

Installed module: Expat.so

Short Descriptions

Expat

provides the Perl Expat interface

8.43. Intltool-0.51.0

The Intltool is an internationalization tool used for extracting translatable strings from source files.

Approximate build time: less than 0.1 SBU
Required disk space: 1.5 MB

8.43.1. Installation of Intltool

First fix a warning that is caused by perl-5.22 and later:

sed -i 's:\\\${:\\\$\\{:' intltool-update.in

Note

The above regular expression looks unusual because of all the backslashes. What it does is add a backslash before the right brace character in the sequence '\${' resulting in '\$\{'.

Prepare Intltool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install
install -v -Dm644 doc/I18N-HOWTO /usr/share/doc/intltool-0.51.0/I18N-HOWTO

8.43.2. Contents of Intltool

Installed programs: intltool-extract, intltool-merge, intltool-prepare, intltool-update, and intltoolize
Installed directories: /usr/share/doc/intltool-0.51.0 and /usr/share/intltool

Short Descriptions

intltoolize

Prepares a package to use intltool

intltool-extract

Generates header files that can be read by gettext

intltool-merge

Merges translated strings into various file types

intltool-prepare

Updates pot files and merges them with translation files

intltool-update

Updates the po template files and merges them with the translations

8.44. Autoconf-2.71

The Autoconf package contains programs for producing shell scripts that can automatically configure source code.

Approximate build time: less than 0.1 SBU (about 6.7 SBU with tests)
Required disk space: 24 MB

8.44.1. Installation of Autoconf

Prepare Autoconf for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Note

The test time for autoconf can be reduced significantly on a system with multiple cores. To do this, append TESTSUITEFLAGS=-j<N> to the line above. For instance, using -j4 can reduce the test time by over 60 percent.

Install the package:

make install

8.44.2. Contents of Autoconf

Installed programs: autoconf, autoheader, autom4te, autoreconf, autoscan, autoupdate, and ifnames
Installed directory: /usr/share/autoconf

Short Descriptions

autoconf

Produces shell scripts that automatically configure software source code packages to adapt to many kinds of Unix-like systems; the configuration scripts it produces are independent—running them does not require the autoconf program

autoheader

A tool for creating template files of C #define statements for configure to use

autom4te

A wrapper for the M4 macro processor

autoreconf

Automatically runs autoconf, autoheader, aclocal, automake, gettextize, and libtoolize in the correct order to save time when changes are made to autoconf and automake template files

autoscan

Helps to create a configure.in file for a software package; it examines the source files in a directory tree, searching them for common portability issues, and creates a configure.scan file that serves as as a preliminary configure.in file for the package

autoupdate

Modifies a configure.in file that still calls autoconf macros by their old names to use the current macro names

ifnames

Helps when writing configure.in files for a software package; it prints the identifiers that the package uses in C preprocessor conditionals [If a package has already been set up to have some portability, this program can help determine what configure needs to check for. It can also fill in gaps in a configure.in file generated by autoscan.]

8.45. Automake-1.16.5

The Automake package contains programs for generating Makefiles for use with Autoconf.

Approximate build time: less than 0.1 SBU (about 7.7 SBU with tests)
Required disk space: 116 MB

8.45.1. Installation of Automake

Prepare Automake for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/automake-1.16.5

Compile the package:

make

Using the -j4 make option speeds up the tests, even on systems with only one processor, due to internal delays in individual tests. To test the results, issue:

make -j4 check

The test t/subobj.sh is known to fail.

Install the package:

make install

8.45.2. Contents of Automake

Installed programs: aclocal, aclocal-1.16 (hard linked with aclocal), automake, and automake-1.16 (hard linked with automake)
Installed directories: /usr/share/aclocal-1.16, /usr/share/automake-1.16, and /usr/share/doc/automake-1.16.5

Short Descriptions

aclocal

Generates aclocal.m4 files based on the contents of configure.in files

aclocal-1.16

A hard link to aclocal

automake

A tool for automatically generating Makefile.in files from Makefile.am files [To create all the Makefile.in files for a package, run this program in the top-level directory. By scanning the configure.in file, it automatically finds each appropriate Makefile.am file and generates the corresponding Makefile.in file.]

automake-1.16

A hard link to automake

8.46. OpenSSL-3.0.5

The OpenSSL package contains management tools and libraries relating to cryptography. These are useful for providing cryptographic functions to other packages, such as OpenSSH, email applications, and web browsers (for accessing HTTPS sites).

Approximate build time: 5.0 SBU
Required disk space: 476 MB

8.46.1. Installation of OpenSSL

Prepare OpenSSL for compilation:

./config --prefix=/usr         \
         --openssldir=/etc/ssl \
         --libdir=lib          \
         shared                \
         zlib-dynamic

Compile the package:

make

To test the results, issue:

make test

One test, 30-test_afalg.t, is known to fail on some kernel configurations (depending on inconsistent values of CONFIG_CRYPTO_USER_API* settings.) If it fails, it can safely be ignored.

Install the package:

sed -i '/INSTALL_LIBS/s/libcrypto.a libssl.a//' Makefile
make MANSUFFIX=ssl install

Add the version to the documentation directory name, to be consistent with other packages:

mv -v /usr/share/doc/openssl /usr/share/doc/openssl-3.0.5

If desired, install some additional documentation:

cp -vfr doc/* /usr/share/doc/openssl-3.0.5

Note

You should update OpenSSL when a new version which fixes vulnerabilities is announced. Since OpenSSL 3.0.0, the OpenSSL versioning scheme follows the MAJOR.MINOR.PATCH format. API/ABI compatibility are guaranteed for the same MAJOR version number. Because LFS installs only the shared libraries, there is no need to recompile packages which link to libcrypto.so or libssl.so when upgrading to a version with MAJOR version number unchanged.

However, any running programs linked to those libraries need to be stopped and restarted. Read the related entries in Section 8.2.1, “Upgrade Issues” for details.

8.46.2. Contents of OpenSSL

Installed programs: c_rehash and openssl
Installed libraries: libcrypto.so and libssl.so
Installed directories: /etc/ssl, /usr/include/openssl, /usr/lib/engines and /usr/share/doc/openssl-3.0.5

Short Descriptions

c_rehash

is a Perl script that scans all files in a directory and adds symbolic links to their hash values. Use of c_rehash is considered obsolete and should be replaced by openssl rehash command

openssl

is a command-line tool for using the various cryptography functions of OpenSSL's crypto library from the shell. It can be used for various functions which are documented in man 1 openssl

libcrypto.so

implements a wide range of cryptographic algorithms used in various Internet standards. The services provided by this library are used by the OpenSSL implementations of SSL, TLS and S/MIME, and they have also been used to implement OpenSSH, OpenPGP, and other cryptographic standards

libssl.so

implements the Transport Layer Security (TLS v1) protocol. It provides a rich API, documentation on which can be found by running man 3 ssl

8.47. Kmod-30

The Kmod package contains libraries and utilities for loading kernel modules

Approximate build time: 0.1 SBU
Required disk space: 12 MB

8.47.1. Installation of Kmod

Prepare Kmod for compilation:

./configure --prefix=/usr          \
            --sysconfdir=/etc      \
            --with-openssl         \
            --with-xz              \
            --with-zstd            \
            --with-zlib

The meaning of the configure options:

--with-openssl

This option enables Kmod to handle PKCS7 signatures for kernel modules.

--with-xz, --with-zlib, and --with-zstd

These options enable Kmod to handle compressed kernel modules.

Compile the package:

make

The test suite of this package requires raw kernel headers (not the sanitized kernel headers installed earlier), which are beyond the scope of LFS.

Install the package and create symlinks for compatibility with Module-Init-Tools (the package that previously handled Linux kernel modules):

make install

for target in depmod insmod modinfo modprobe rmmod; do
  ln -sfv ../bin/kmod /usr/sbin/$target
done

ln -sfv kmod /usr/bin/lsmod

8.47.2. Contents of Kmod

Installed programs: depmod (link to kmod), insmod (link to kmod), kmod, lsmod (link to kmod), modinfo (link to kmod), modprobe (link to kmod), and rmmod (link to kmod)
Installed library: libkmod.so

Short Descriptions

depmod

Creates a dependency file based on the symbols it finds in the existing set of modules; this dependency file is used by modprobe to automatically load the required modules

insmod

Installs a loadable module in the running kernel

kmod

Loads and unloads kernel modules

lsmod

Lists currently loaded modules

modinfo

Examines an object file associated with a kernel module and displays any information that it can glean

modprobe

Uses a dependency file, created by depmod, to automatically load relevant modules

rmmod

Unloads modules from the running kernel

libkmod

This library is used by other programs to load and unload kernel modules

8.48. Libelf from Elfutils-0.187

Libelf is a library for handling ELF (Executable and Linkable Format) files.

Approximate build time: 0.9 SBU
Required disk space: 117 MB

8.48.1. Installation of Libelf

Libelf is part of elfutils-0.187 package. Use the elfutils-0.187.tar.bz2 as the source tarball.

Prepare Libelf for compilation:

./configure --prefix=/usr                \
            --disable-debuginfod         \
            --enable-libdebuginfod=dummy

Compile the package:

make

To test the results, issue:

make check

Install only Libelf:

make -C libelf install
install -vm644 config/libelf.pc /usr/lib/pkgconfig
rm /usr/lib/libelf.a

8.48.2. Contents of Libelf

Installed Library: libelf.so (symlink) and libelf-0.187.so
Installed Directory: /usr/include/elfutils

Short Descriptions

libelf

Contains API functions to handle ELF object files

8.49. Libffi-3.4.2

The Libffi library provides a portable, high level programming interface to various calling conventions. This allows a programmer to call any function specified by a call interface description at run time.

Approximate build time: 1.8 SBU
Required disk space: 10 MB

8.49.1. Installation of Libffi

Note

Similar to GMP, libffi builds with optimizations specific to the processor in use. If building for another system, change the value of the --with-gcc-arch= parameter in the following command to an architecture name fully implemented by the CPU on that system. If this is not done, all applications that link to libffi will trigger Illegal Operation Errors.

Prepare libffi for compilation:

./configure --prefix=/usr          \
            --disable-static       \
            --with-gcc-arch=native \
            --disable-exec-static-tramp

The meaning of the configure option:

--with-gcc-arch=native

Ensure GCC optimizes for the current system. If this is not specified, the system is guessed and the code generated may not be correct for some systems. If the generated code will be copied from the native system to a less capable system, use the less capable system as a parameter. For details about alternative system types, see the x86 options in the GCC manual.

--disable-exec-static-tramp

Disable static trampoline support. It's a new security feature in libffi, but some BLFS packages (notably GJS) have not been adapted for it.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.49.2. Contents of Libffi

Installed library: libffi.so

Short Descriptions

libffi

contains the foreign function interface API functions

8.50. Python-3.10.6

The Python 3 package contains the Python development environment. It is useful for object-oriented programming, writing scripts, prototyping large programs, or developing entire applications.

Approximate build time: 3.4 SBU
Required disk space: 283 MB

8.50.1. Installation of Python 3

Prepare Python for compilation:

./configure --prefix=/usr        \
            --enable-shared      \
            --with-system-expat  \
            --with-system-ffi    \
            --enable-optimizations

The meaning of the configure options:

--with-system-expat

This switch enables linking against system version of Expat.

--with-system-ffi

This switch enables linking against system version of libffi.

--enable-optimizations

This switch enables stable, but expensive, optimizations.

Compile the package:

make

Running the tests at this point is not recommended. The tests are known to hang indefinitely in the partial LFS environment. If desired, the tests can be rerun at the end of this chapter or when Python 3 is reinstalled in BLFS. To run the tests anyway, issue make test.

Install the package:

make install

In several places we use the pip3 command to install Python 3 programs and modules for all users as root. This conflicts with the Python developers recommendation to install packages into a virtual environment or the home directory of a regular user (by running pip3 as this user). To this end, a multi-line warning is written when using pip3 as the root user. The main reason of this recommendation is for avoiding a conflict with the system package manager (dpkg for example), but LFS does not have a system-wide package manager so this is not a problem. And, pip3 will attempt to check for a new version of itself whenever it's run. As domain name resolving is not configured yet in LFS chroot environment, it will fail to check for a new version and produce a warning. Once we boot the LFS system and set up network connection, it will then produce a warning telling the user to update it from a pre-built wheel on PyPI if any new version is available. But LFS consider pip3 a part of Python 3 so it should not be updated separately, and an update from a pre-built wheel will deviate from our purpose to build a Linux system from source code. So the warning for a new pip3 version should be ignored as well. If desired, suppress these warnings by running the following commands:

cat > /etc/pip.conf << EOF
[global]
root-user-action = ignore
disable-pip-version-check = true
EOF

Important

In LFS and BLFS we normally build and install Python modules with the pip3 command. Please take care that the pip3 install commands in both the books should be run as the root user unless it's for a Python virtual environment. Running a pip3 install as a non-root user may seem to work fine, but it will cause the installed module to be inaccessible by other users.

pip3 install will not reinstall an already installed module by default. For using the pip3 install command to upgrade a module (for example, from meson-0.61.3 to meson-0.62.0), insert the option --upgrade into the command line. If it's really necessary to downgrade a module or reinstall the same version for some reason, insert --force-reinstall --no-deps into the command line.

If desired, install the preformatted documentation:

install -v -dm755 /usr/share/doc/python-3.10.6/html

tar --strip-components=1  \
    --no-same-owner       \
    --no-same-permissions \
    -C /usr/share/doc/python-3.10.6/html \
    -xvf ../python-3.10.6-docs-html.tar.bz2

The meaning of the documentation install commands:

--no-same-owner and --no-same-permissions

Ensure the installed files have the correct ownership and permissions. Without these options, using tar will install the package files with the upstream creator's values.

8.50.2. Contents of Python 3

Installed Programs: 2to3, idle3, pip3, pydoc3, python3, and python3-config
Installed Library: libpython3.10.so and libpython3.so
Installed Directories: /usr/include/python3.10, /usr/lib/python3, and /usr/share/doc/python-3.10.6

Short Descriptions

2to3

is a Python program that reads Python 2.x source code and applies a series of fixes to transform it into valid Python 3.x code

idle3

is a wrapper script that opens a Python aware GUI editor. For this script to run, you must have installed Tk before Python so that the Tkinter Python module is built

pip3

The package installer for Python. You can use pip to install packages from Python Package Index and other indexes

pydoc3

is the Python documentation tool

python3

is an interpreted, interactive, object-oriented programming language

8.51. Wheel-0.37.1

Wheel is a Python library that is the reference implementation of the Python wheel packaging standard.

Approximate build time: less than 0.1 SBU
Required disk space: 956 KB

8.51.1. Installation of Wheel

Install wheel with the following command:

pip3 install --no-index $PWD

The meaning of the pip3 options:

install

Install the package.

--no-index

Prevent pip from fetching files from the online package repository (PyPI). If packages are installed in the correct order, then it won't need to fetch any files in the first place, but this option adds some safety in case of user error.

$PWD

Look for files to install in the current working directory.

8.51.2. Contents of Wheel

Installed program: wheel
Installed directories: /usr/lib/python3.10/site-packages/wheel and /usr/lib/python3.10/site-packages/wheel-0.37.1-py3.10.egg-info

Short Descriptions

wheel

is an utility to unpack, pack, or convert wheel packages

8.52. Ninja-1.11.0

Ninja is a small build system with a focus on speed.

Approximate build time: 0.6 SBU
Required disk space: 79 MB

Tip

This section is not strictly required for LFS if not using systemd. On the other hand, ninja associated to meson makes a powerful build system combination, which is expected to be used more and more often. It is required for several packages in the BLFS book.

8.52.1. Installation of Ninja

When run, ninja normally runs a maximum number of processes in parallel. By default this is the number of cores on the system plus two. In some cases this can overheat a CPU or run a system out of memory. If run from the command line, passing a -jN parameter will limit the number of parallel processes, but some packages embed the execution of ninja and do not pass a -j parameter.

Using the optional procedure below allows a user to limit the number of parallel processes via an environment variable, NINJAJOBS. For example, setting:

export NINJAJOBS=4

will limit ninja to four parallel processes.

If desired, add the capability to use the environment variable NINJAJOBS by running:

sed -i '/int Guess/a \
  int   j = 0;\
  char* jobs = getenv( "NINJAJOBS" );\
  if ( jobs != NULL ) j = atoi( jobs );\
  if ( j > 0 ) return j;\
' src/ninja.cc

Build Ninja with:

python3 configure.py --bootstrap

The meaning of the build option:

--bootstrap

This parameter forces ninja to rebuild itself for the current system.

To test the results, issue:

./ninja ninja_test
./ninja_test --gtest_filter=-SubprocessTest.SetWithLots

Install the package:

install -vm755 ninja /usr/bin/
install -vDm644 misc/bash-completion /usr/share/bash-completion/completions/ninja
install -vDm644 misc/zsh-completion  /usr/share/zsh/site-functions/_ninja

8.52.2. Contents of Ninja

Installed programs: ninja

Short Descriptions

ninja

is the Ninja build system

8.53. Meson-0.63.1

Meson is an open source build system meant to be both extremely fast and as user friendly as possible.

Approximate build time: less than 0.1 SBU
Required disk space: 38 MB

Tip

This section is not strictly required for LFS if not using systemd. On the other hand, meson/ninja is a powerful build system, which is expected to be used more and more often. It is required for several packages in the BLFS book.

8.53.1. Installation of Meson

Compile Meson with the following command:

pip3 wheel -w dist --no-build-isolation --no-deps $PWD

The test suite requires some packages out of the scope of LFS.

Install the package:

pip3 install --no-index --find-links dist meson
install -vDm644 data/shell-completions/bash/meson /usr/share/bash-completion/completions/meson
install -vDm644 data/shell-completions/zsh/_meson /usr/share/zsh/site-functions/_meson

The meaning of the install parameters:

-w dist

Put the created wheels into the dist directory.

--find-links dist

Install wheels from the dist directory.

8.53.2. Contents of Meson

Installed programs: meson
Installed directory: /usr/lib/python3.10/site-packages/meson-0.63.1.dist-info and /usr/lib/python3.10/site-packages/mesonbuild

Short Descriptions

meson

A high productivity build system

8.54. Coreutils-9.1

The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 2.8 SBU
Required disk space: 159 MB

8.54.1. Installation of Coreutils

POSIX requires that programs from Coreutils recognize character boundaries correctly even in multibyte locales. The following patch fixes this non-compliance and other internationalization-related bugs.

patch -Np1 -i ../coreutils-9.1-i18n-1.patch

Note

In the past, many bugs were found in this patch. When reporting new bugs to Coreutils maintainers, please check first if they are reproducible without this patch.

Now prepare Coreutils for compilation:

autoreconf -fiv
FORCE_UNSAFE_CONFIGURE=1 ./configure \
            --prefix=/usr            \
            --enable-no-install-program=kill,uptime

The meaning of the configure options:

autoreconf

The patch for internationalization has modified the building system of the package, so the configuration files have to be regenerated.

FORCE_UNSAFE_CONFIGURE=1

This environment variable allows the package to be built as the root user.

--enable-no-install-program=kill,uptime

The purpose of this switch is to prevent Coreutils from installing binaries that will be installed by other packages later.

Compile the package:

make

Skip down to Install the package if not running the test suite.

Now the test suite is ready to be run. First, run the tests that are meant to be run as user root:

make NON_ROOT_USERNAME=tester check-root

We're going to run the remainder of the tests as the tester user. Certain tests require that the user be a member of more than one group. So that these tests are not skipped, add a temporary group and make the user tester a part of it:

echo "dummy:x:102:tester" >> /etc/group

Fix some of the permissions so that the non-root user can compile and run the tests:

chown -Rv tester . 

Now run the tests:

su tester -c "PATH=$PATH make RUN_EXPENSIVE_TESTS=yes check"

The sort-NaN-infloop test is known to fail with GCC-12.

Remove the temporary group:

sed -i '/dummy/d' /etc/group

Install the package:

make install

Move programs to the locations specified by the FHS:

mv -v /usr/bin/chroot /usr/sbin
mv -v /usr/share/man/man1/chroot.1 /usr/share/man/man8/chroot.8
sed -i 's/"1"/"8"/' /usr/share/man/man8/chroot.8

8.54.2. Contents of Coreutils

Installed programs: [, b2sum, base32, base64, basename, basenc, cat, chcon, chgrp, chmod, chown, chroot, cksum, comm, cp, csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor, false, fmt, fold, groups, head, hostid, id, install, join, link, ln, logname, ls, md5sum, mkdir, mkfifo, mknod, mktemp, mv, nice, nl, nohup, nproc, numfmt, od, paste, pathchk, pinky, pr, printenv, printf, ptx, pwd, readlink, realpath, rm, rmdir, runcon, seq, sha1sum, sha224sum, sha256sum, sha384sum, sha512sum, shred, shuf, sleep, sort, split, stat, stdbuf, stty, sum, sync, tac, tail, tee, test, timeout, touch, tr, true, truncate, tsort, tty, uname, unexpand, uniq, unlink, users, vdir, wc, who, whoami, and yes
Installed library: libstdbuf.so (in /usr/libexec/coreutils)
Installed directory: /usr/libexec/coreutils

Short Descriptions

[

Is an actual command, /usr/bin/[, that is a synonym for the test command

base32

Encodes and decodes data according to the base32 specification (RFC 4648)

base64

Encodes and decodes data according to the base64 specification (RFC 4648)

b2sum

Prints or checks BLAKE2 (512-bit) checksums

basename

Strips any path and a given suffix from a file name

basenc

Encodes or decodes data using various algorithms

cat

Concatenates files to standard output

chcon

Changes security context for files and directories

chgrp

Changes the group ownership of files and directories

chmod

Changes the permissions of each file to the given mode; the mode can be either a symbolic representation of the changes to make or an octal number representing the new permissions

chown

Changes the user and/or group ownership of files and directories

chroot

Runs a command with the specified directory as the / directory

cksum

Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file

comm

Compares two sorted files, outputting in three columns the lines that are unique and the lines that are common

cp

Copies files

csplit

Splits a given file into several new files, separating them according to given patterns or line numbers and outputting the byte count of each new file

cut

Prints sections of lines, selecting the parts according to given fields or positions

date

Displays the current time in the given format, or sets the system date

dd

Copies a file using the given block size and count, while optionally performing conversions on it

df

Reports the amount of disk space available (and used) on all mounted file systems, or only on the file systems holding the selected files

dir

Lists the contents of each given directory (the same as the ls command)

dircolors

Outputs commands to set the LS_COLOR environment variable to change the color scheme used by ls

dirname

Strips the non-directory suffix from a file name

du

Reports the amount of disk space used by the current directory, by each of the given directories (including all subdirectories) or by each of the given files

echo

Displays the given strings

env

Runs a command in a modified environment

expand

Converts tabs to spaces

expr

Evaluates expressions

factor

Prints the prime factors of all specified integer numbers

false

Does nothing, unsuccessfully; it always exits with a status code indicating failure

fmt

Reformats the paragraphs in the given files

fold

Wraps the lines in the given files

groups

Reports a user's group memberships

head

Prints the first ten lines (or the given number of lines) of each given file

hostid

Reports the numeric identifier (in hexadecimal) of the host

id

Reports the effective user ID, group ID, and group memberships of the current user or specified user

install

Copies files while setting their permission modes and, if possible, their owner and group

join

Joins the lines that have identical join fields from two separate files

link

Creates a hard link with the given name to a file

ln

Makes hard links or soft (symbolic) links between files

logname

Reports the current user's login name

ls

Lists the contents of each given directory

md5sum

Reports or checks Message Digest 5 (MD5) checksums

mkdir

Creates directories with the given names

mkfifo

Creates First-In, First-Outs (FIFOs), a "named pipe" in UNIX parlance, with the given names

mknod

Creates device nodes with the given names; a device node is a character special file, a block special file, or a FIFO

mktemp

Creates temporary files in a secure manner; it is used in scripts

mv

Moves or renames files or directories

nice

Runs a program with modified scheduling priority

nl

Numbers the lines from the given files

nohup

Runs a command immune to hangups, with its output redirected to a log file

nproc

Prints the number of processing units available to a process

numfmt

Converts numbers to or from human-readable strings

od

Dumps files in octal and other formats

paste

Merges the given files, joining sequentially corresponding lines side by side, separated by tab characters

pathchk

Checks if file names are valid or portable

pinky

Is a lightweight finger client; it reports some information about the given users

pr

Paginates and columnates files for printing

printenv

Prints the environment

printf

Prints the given arguments according to the given format, much like the C printf function

ptx

Produces a permuted index from the contents of the given files, with each keyword in its context

pwd

Reports the name of the current working directory

readlink

Reports the value of the given symbolic link

realpath

Prints the resolved path

rm

Removes files or directories

rmdir

Removes directories if they are empty

runcon

Runs a command with specified security context

seq

Prints a sequence of numbers within a given range and with a given increment

sha1sum

Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums

sha224sum

Prints or checks 224-bit Secure Hash Algorithm checksums

sha256sum

Prints or checks 256-bit Secure Hash Algorithm checksums

sha384sum

Prints or checks 384-bit Secure Hash Algorithm checksums

sha512sum

Prints or checks 512-bit Secure Hash Algorithm checksums

shred

Overwrites the given files repeatedly with complex patterns, making it difficult to recover the data

shuf

Shuffles lines of text

sleep

Pauses for the given amount of time

sort

Sorts the lines from the given files

split

Splits the given file into pieces, by size or by number of lines

stat

Displays file or filesystem status

stdbuf

Runs commands with altered buffering operations for its standard streams

stty

Sets or reports terminal line settings

sum

Prints checksum and block counts for each given file

sync

Flushes file system buffers; it forces changed blocks to disk and updates the super block

tac

Concatenates the given files in reverse

tail

Prints the last ten lines (or the given number of lines) of each given file

tee

Reads from standard input while writing both to standard output and to the given files

test

Compares values and checks file types

timeout

Runs a command with a time limit

touch

Changes file timestamps, setting the access and modification times of the given files to the current time; files that do not exist are created with zero length

tr

Translates, squeezes, and deletes the given characters from standard input

true

Does nothing, successfully; it always exits with a status code indicating success

truncate

Shrinks or expands a file to the specified size

tsort

Performs a topological sort; it writes a completely ordered list according to the partial ordering in a given file

tty

Reports the file name of the terminal connected to standard input

uname

Reports system information

unexpand

Converts spaces to tabs

uniq

Discards all but one of successive identical lines

unlink

Removes the given file

users

Reports the names of the users currently logged on

vdir

Is the same as ls -l

wc

Reports the number of lines, words, and bytes for each given file, as well as a total line when more than one file is given

who

Reports who is logged on

whoami

Reports the user name associated with the current effective user ID

yes

Repeatedly outputs y or a given string until killed

libstdbuf

Library used by stdbuf

8.55. Check-0.15.2

Check is a unit testing framework for C.

Approximate build time: 0.1 SBU (about 3.6 SBU with tests)
Required disk space: 12 MB

8.55.1. Installation of Check

Prepare Check for compilation:

./configure --prefix=/usr --disable-static

Build the package:

make

Compilation is now complete. To run the Check test suite, issue the following command:

make check

Install the package:

make docdir=/usr/share/doc/check-0.15.2 install

8.55.2. Contents of Check

Installed program: checkmk
Installed library: libcheck.so

Short Descriptions

checkmk

Awk script for generating C unit tests for use with the Check unit testing framework

libcheck.so

Contains functions that allow Check to be called from a test program

8.56. Diffutils-3.8

The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.6 SBU
Required disk space: 35 MB

8.56.1. Installation of Diffutils

Prepare Diffutils for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.56.2. Contents of Diffutils

Installed programs: cmp, diff, diff3, and sdiff

Short Descriptions

cmp

Compares two files and reports whether or in which bytes they differ

diff

Compares two files or directories and reports which lines in the files differ

diff3

Compares three files line by line

sdiff

Merges two files and interactively outputs the results

8.57. Gawk-5.1.1

The Gawk package contains programs for manipulating text files.

Approximate build time: 0.4 SBU
Required disk space: 44 MB

8.57.1. Installation of Gawk

First, ensure some unneeded files are not installed:

sed -i 's/extras//' Makefile.in

Prepare Gawk for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

If desired, install the documentation:

mkdir -pv                                   /usr/share/doc/gawk-5.1.1
cp    -v doc/{awkforai.txt,*.{eps,pdf,jpg}} /usr/share/doc/gawk-5.1.1

8.57.2. Contents of Gawk

Installed programs: awk (link to gawk), gawk, and awk-5.1.1
Installed libraries: filefuncs.so, fnmatch.so, fork.so, inplace.so, intdiv.so, ordchr.so, readdir.so, readfile.so, revoutput.so, revtwoway.so, rwarray.so, and time.so (all in /usr/lib/gawk)
Installed directories: /usr/lib/gawk, /usr/libexec/awk, /usr/share/awk, and /usr/share/doc/gawk-5.1.1

Short Descriptions

awk

A link to gawk

gawk

A program for manipulating text files; it is the GNU implementation of awk

gawk-5.1.1

A hard link to gawk

8.58. Findutils-4.9.0

The Findutils package contains programs to find files. These programs are provided to recursively search through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but is unreliable if the database has not been recently updated).

Approximate build time: 0.8 SBU
Required disk space: 52 MB

8.58.1. Installation of Findutils

Prepare Findutils for compilation:

case $(uname -m) in
    i?86)   TIME_T_32_BIT_OK=yes ./configure --prefix=/usr --localstatedir=/var/lib/locate ;;
    x86_64) ./configure --prefix=/usr --localstatedir=/var/lib/locate ;;
esac

The meaning of the configure options:

TIME_32_BIT_OK=yes

This setting is needed for building on a 32 bit system.

--localstatedir

This option changes the location of the locate database to be in /var/lib/locate, which is FHS-compliant.

Compile the package:

make

To test the results, issue:

chown -Rv tester .
su tester -c "PATH=$PATH make check"

Install the package:

make install

8.58.2. Contents of Findutils

Installed programs: find, locate, updatedb, and xargs
Installed directory: /var/lib/locate

Short Descriptions

find

Searches given directory trees for files matching the specified criteria

locate

Searches through a database of file names and reports the names that contain a given string or match a given pattern

updatedb

Updates the locate database; it scans the entire file system (including other file systems that are currently mounted, unless told not to) and puts every file name it finds into the database

xargs

Can be used to apply a given command to a list of files

8.59. Groff-1.22.4

The Groff package contains programs for processing and formatting text.

Approximate build time: 0.5 SBU
Required disk space: 88 MB

8.59.1. Installation of Groff

Groff expects the environment variable PAGE to contain the default paper size. For users in the United States, PAGE=letter is appropriate. Elsewhere, PAGE=A4 may be more suitable. While the default paper size is configured during compilation, it can be overridden later by echoing either A4 or letter to the /etc/papersize file.

Prepare Groff for compilation:

PAGE=<paper_size> ./configure --prefix=/usr

This package does not support parallel build. Compile the package:

make -j1

This package does not come with a test suite.

Install the package:

make install

8.59.2. Contents of Groff

Installed programs: addftinfo, afmtodit, chem, eqn, eqn2graph, gdiffmk, glilypond, gperl, gpinyin, grap2graph, grn, grodvi, groff, groffer, grog, grolbp, grolj4, gropdf, grops, grotty, hpftodit, indxbib, lkbib, lookbib, mmroff, neqn, nroff, pdfmom, pdfroff, pfbtops, pic, pic2graph, post-grohtml, preconv, pre-grohtml, refer, roff2dvi, roff2html, roff2pdf, roff2ps, roff2text, roff2x, soelim, tbl, tfmtodit, and troff
Installed directories: /usr/lib/groff and /usr/share/doc/groff-1.22.4, /usr/share/groff

Short Descriptions

addftinfo

Reads a troff font file and adds some additional font-metric information that is used by the groff system

afmtodit

Creates a font file for use with groff and grops

chem

Groff preprocessor for producing chemical structure diagrams

eqn

Compiles descriptions of equations embedded within troff input files into commands that are understood by troff

eqn2graph

Converts a troff EQN (equation) into a cropped image

gdiffmk

Marks differences between groff/nroff/troff files

glilypond

Transforms sheet music written in the lilypond language into the groff language

gperl

Preprocesor for groff, allowing addition of perl code into groff files

gpinyin

Preprocesor for groff, allowing addition of Chinese European-like language Pinyin into groff files.

grap2graph

Converts a grap diagram into a cropped bitmap image

grn

A groff preprocessor for gremlin files

grodvi

A driver for groff that produces TeX dvi format

groff

A front-end to the groff document formatting system; normally, it runs the troff program and a post-processor appropriate for the selected device

groffer

Displays groff files and man pages on X and tty terminals

grog

Reads files and guesses which of the groff options -e, -man, -me, -mm, -ms, -p, -s, and -t are required for printing files, and reports the groff command including those options

grolbp

Is a groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers)

grolj4

Is a driver for groff that produces output in PCL5 format suitable for an HP LaserJet 4 printer

gropdf

Translates the output of GNU troff to PDF

grops

Translates the output of GNU troff to PostScript

grotty

Translates the output of GNU troff into a form suitable for typewriter-like devices

hpftodit

Creates a font file for use with groff -Tlj4 from an HP-tagged font metric file

indxbib

Creates an inverted index for the bibliographic databases with a specified file for use with refer, lookbib, and lkbib

lkbib

Searches bibliographic databases for references that contain specified keys and reports any references found

lookbib

Prints a prompt on the standard error (unless the standard input is not a terminal), reads a line containing a set of keywords from the standard input, searches the bibliographic databases in a specified file for references containing those keywords, prints any references found on the standard output, and repeats this process until the end of input

mmroff

A simple preprocessor for groff

neqn

Formats equations for American Standard Code for Information Interchange (ASCII) output

nroff

A script that emulates the nroff command using groff

pdfmom

Is a wrapper around groff that facilitates the production of PDF documents from files formatted with the mom macros.

pdfroff

Creates pdf documents using groff

pfbtops

Translates a PostScript font in .pfb format to ASCII

pic

Compiles descriptions of pictures embedded within troff or TeX input files into commands understood by TeX or troff

pic2graph

Converts a PIC diagram into a cropped image

post-grohtml

Translates the output of GNU troff to HTML

preconv

Converts encoding of input files to something GNU troff understands

pre-grohtml

Translates the output of GNU troff to HTML

refer

Copies the contents of a file to the standard output, except that lines between .[ and .] are interpreted as citations, and lines between .R1 and .R2 are interpreted as commands for how citations are to be processed

roff2dvi

Transforms roff files into DVI format

roff2html

Transforms roff files into HTML format

roff2pdf

Transforms roff files into PDFs

roff2ps

Transforms roff files into ps files

roff2text

Transforms roff files into text files

roff2x

Transforms roff files into other formats

soelim

Reads files and replaces lines of the form .so file by the contents of the mentioned file

tbl

Compiles descriptions of tables embedded within troff input files into commands that are understood by troff

tfmtodit

Creates a font file for use with groff -Tdvi

troff

Is highly compatible with Unix troff; it should usually be invoked using the groff command, which will also run preprocessors and post-processors in the appropriate order and with the appropriate options

8.60. GRUB-2.06

The GRUB package contains the GRand Unified Bootloader.

Approximate build time: 0.7 SBU
Required disk space: 159 MB

8.60.1. Installation of GRUB

Note

If your system has UEFI support and you wish to boot LFS with UEFI, you can skip this package in LFS, and install GRUB with UEFI support (and its dependencies) following the BLFS page at the end of this chapter.

Prepare GRUB for compilation:

./configure --prefix=/usr          \
            --sysconfdir=/etc      \
            --disable-efiemu       \
            --disable-werror

The meaning of the new configure options:

--disable-werror

This allows the build to complete with warnings introduced by more recent Flex versions.

--disable-efiemu

This option minimizes what is built by disabling a feature and testing programs not needed for LFS.

Compile the package:

make

The test suite for this packages is not recommended. Most of the tests depend on packages that are not available in the limited LFS environment. To run the tests anyway, run make check.

Install the package:

make install
mv -v /etc/bash_completion.d/grub /usr/share/bash-completion/completions

Using GRUB to make your LFS system bootable will be discussed in Section 10.4, “Using GRUB to Set Up the Boot Process”.

8.60.2. Contents of GRUB

Installed programs: grub-bios-setup, grub-editenv, grub-file, grub-fstest, grub-glue-efi, grub-install, grub-kbdcomp, grub-macbless, grub-menulst2cfg, grub-mkconfig, grub-mkimage, grub-mklayout, grub-mknetdir, grub-mkpasswd-pbkdf2, grub-mkrelpath, grub-mkrescue, grub-mkstandalone, grub-ofpathname, grub-probe, grub-reboot, grub-render-label, grub-script-check, grub-set-default, grub-sparc64-setup, and grub-syslinux2cfg
Installed directories: /usr/lib/grub, /etc/grub.d, /usr/share/grub, and /boot/grub (when grub-install is first run)

Short Descriptions

grub-bios-setup

Is a helper program for grub-install

grub-editenv

A tool to edit the environment block

grub-file

Checks if FILE is of the specified type.

grub-fstest

Tool to debug the filesystem driver

grub-glue-efi

Glue 32-bit and 64-bit binary into Apple universal one.

grub-install

Install GRUB on your drive

grub-kbdcomp

Script that converts an xkb layout into one recognized by GRUB

grub-macbless

Mac-style bless on HFS or HFS+ files

grub-menulst2cfg

Converts a GRUB Legacy menu.lst into a grub.cfg for use with GRUB 2

grub-mkconfig

Generate a grub config file

grub-mkimage

Make a bootable image of GRUB

grub-mklayout

Generates a GRUB keyboard layout file

grub-mknetdir

Prepares a GRUB netboot directory

grub-mkpasswd-pbkdf2

Generates an encrypted PBKDF2 password for use in the boot menu

grub-mkrelpath

Makes a system pathname relative to its root

grub-mkrescue

Make a bootable image of GRUB suitable for a floppy disk or CDROM/DVD

grub-mkstandalone

Generates a standalone image

grub-ofpathname

Is a helper program that prints the path of a GRUB device

grub-probe

Probe device information for a given path or device

grub-reboot

Sets the default boot entry for GRUB for the next boot only

grub-render-label

Render Apple .disk_label for Apple Macs

grub-script-check

Checks GRUB configuration script for syntax errors

grub-set-default

Sets the default boot entry for GRUB

grub-sparc64-setup

Is a helper program for grub-setup

grub-syslinux2cfg

Transform a syslinux config file into grub.cfg format

8.61. Gzip-1.12

The Gzip package contains programs for compressing and decompressing files.

Approximate build time: 0.3 SBU
Required disk space: 21 MB

8.61.1. Installation of Gzip

Prepare Gzip for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.61.2. Contents of Gzip

Installed programs: gunzip, gzexe, gzip, uncompress (hard link with gunzip), zcat, zcmp, zdiff, zegrep, zfgrep, zforce, zgrep, zless, zmore, and znew

Short Descriptions

gunzip

Decompresses gzipped files

gzexe

Creates self-decompressing executable files

gzip

Compresses the given files using Lempel-Ziv (LZ77) coding

uncompress

Decompresses compressed files

zcat

Decompresses the given gzipped files to standard output

zcmp

Runs cmp on gzipped files

zdiff

Runs diff on gzipped files

zegrep

Runs egrep on gzipped files

zfgrep

Runs fgrep on gzipped files

zforce

Forces a .gz extension on all given files that are gzipped files, so that gzip will not compress them again; this can be useful when file names were truncated during a file transfer

zgrep

Runs grep on gzipped files

zless

Runs less on gzipped files

zmore

Runs more on gzipped files

znew

Re-compresses files from compress format to gzip format—.Z to .gz

8.62. IPRoute2-5.19.0

The IPRoute2 package contains programs for basic and advanced IPV4-based networking.

Approximate build time: 0.2 SBU
Required disk space: 16 MB

8.62.1. Installation of IPRoute2

The arpd program included in this package will not be built since it is dependent on Berkeley DB, which is not installed in LFS. However, a directory for arpd and a man page will still be installed. Prevent this by running the commands below. If the arpd binary is needed, instructions for compiling Berkeley DB can be found in the BLFS Book at https://www.linuxfromscratch.org/blfs/view/11.2/server/db.html.

sed -i /ARPD/d Makefile
rm -fv man/man8/arpd.8

Compile the package:

make NETNS_RUN_DIR=/run/netns

This package does not have a working test suite.

Install the package:

make SBINDIR=/usr/sbin install

If desired, install the documentation:

mkdir -pv             /usr/share/doc/iproute2-5.19.0
cp -v COPYING README* /usr/share/doc/iproute2-5.19.0

8.62.2. Contents of IPRoute2

Installed programs: bridge, ctstat (link to lnstat), genl, ifcfg, ifstat, ip, lnstat, nstat, routef, routel, rtacct, rtmon, rtpr, rtstat (link to lnstat), ss, and tc
Installed directories: /etc/iproute2, /usr/lib/tc, and /usr/share/doc/iproute2-5.19.0

Short Descriptions

bridge

Configures network bridges

ctstat

Connection status utility

genl

Generic netlink utility frontend

ifcfg

A shell script wrapper for the ip command [Note that it requires the arping and rdisk programs from the iputils package found at http://www.skbuff.net/iputils/.]

ifstat

Shows the interface statistics, including the amount of transmitted and received packets by interface

ip

The main executable. It has several different functions:

ip link <device> allows users to look at the state of devices and to make changes

ip addr allows users to look at addresses and their properties, add new addresses, and delete old ones

ip neighbor allows users to look at neighbor bindings and their properties, add new neighbor entries, and delete old ones

ip rule allows users to look at the routing policies and change them

ip route allows users to look at the routing table and change routing table rules

ip tunnel allows users to look at the IP tunnels and their properties, and change them

ip maddr allows users to look at the multicast addresses and their properties, and change them

ip mroute allows users to set, change, or delete the multicast routing

ip monitor allows users to continuously monitor the state of devices, addresses and routes

lnstat

Provides Linux network statistics; it is a generalized and more feature-complete replacement for the old rtstat program

nstat

Shows network statistics

routef

A component of ip route. This is for flushing the routing tables

routel

A component of ip route. This is for listing the routing tables

rtacct

Displays the contents of /proc/net/rt_acct

rtmon

Route monitoring utility

rtpr

Converts the output of ip -o back into a readable form

rtstat

Route status utility

ss

Similar to the netstat command; shows active connections

tc

Traffic Controlling Executable; this is for Quality Of Service (QOS) and Class Of Service (COS) implementations

tc qdisc allows users to setup the queueing discipline

tc class allows users to setup classes based on the queuing discipline scheduling

tc estimator allows users to estimate the network flow into a network

tc filter allows users to setup the QOS/COS packet filtering

tc policy allows users to setup the QOS/COS policies

8.63. Kbd-2.5.1

The Kbd package contains key-table files, console fonts, and keyboard utilities.

Approximate build time: 0.1 SBU
Required disk space: 35 MB

8.63.1. Installation of Kbd

The behaviour of the backspace and delete keys is not consistent across the keymaps in the Kbd package. The following patch fixes this issue for i386 keymaps:

patch -Np1 -i ../kbd-2.5.1-backspace-1.patch

After patching, the backspace key generates the character with code 127, and the delete key generates a well-known escape sequence.

Remove the redundant resizecons program (it requires the defunct svgalib to provide the video mode files - for normal use setfont sizes the console appropriately) together with its manpage.

sed -i '/RESIZECONS_PROGS=/s/yes/no/' configure
sed -i 's/resizecons.8 //' docs/man/man8/Makefile.in

Prepare Kbd for compilation:

./configure --prefix=/usr --disable-vlock

The meaning of the configure option:

--disable-vlock

This option prevents the vlock utility from being built because it requires the PAM library, which isn't available in the chroot environment.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Note

For some languages (e.g., Belarusian) the Kbd package doesn't provide a useful keymap where the stock by keymap assumes the ISO-8859-5 encoding, and the CP1251 keymap is normally used. Users of such languages have to download working keymaps separately.

If desired, install the documentation:

mkdir -pv           /usr/share/doc/kbd-2.5.1
cp -R -v docs/doc/* /usr/share/doc/kbd-2.5.1

8.63.2. Contents of Kbd

Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, kbdinfo, kbd_mode, kbdrate, loadkeys, loadunimap, mapscrn, openvt, psfaddtable (link to psfxtable), psfgettable (link to psfxtable), psfstriptable (link to psfxtable), psfxtable, setfont, setkeycodes, setleds, setmetamode, setvtrgb, showconsolefont, showkey, unicode_start, and unicode_stop
Installed directories: /usr/share/consolefonts, /usr/share/consoletrans, /usr/share/keymaps, /usr/share/doc/kbd-2.5.1, and /usr/share/unimaps

Short Descriptions

chvt

Changes the foreground virtual terminal

deallocvt

Deallocates unused virtual terminals

dumpkeys

Dumps the keyboard translation tables

fgconsole

Prints the number of the active virtual terminal

getkeycodes

Prints the kernel scancode-to-keycode mapping table

kbdinfo

Obtains information about the status of a console

kbd_mode

Reports or sets the keyboard mode

kbdrate

Sets the keyboard repeat and delay rates

loadkeys

Loads the keyboard translation tables

loadunimap

Loads the kernel unicode-to-font mapping table

mapscrn

An obsolete program that used to load a user-defined output character mapping table into the console driver; this is now done by setfont

openvt

Starts a program on a new virtual terminal (VT)

psfaddtable

Adds a Unicode character table to a console font

psfgettable

Extracts the embedded Unicode character table from a console font

psfstriptable

Removes the embedded Unicode character table from a console font

psfxtable

Handles Unicode character tables for console fonts

setfont

Changes the Enhanced Graphic Adapter (EGA) and Video Graphics Array (VGA) fonts on the console

setkeycodes

Loads kernel scancode-to-keycode mapping table entries; this is useful if there are unusual keys on the keyboard

setleds

Sets the keyboard flags and Light Emitting Diodes (LEDs)

setmetamode

Defines the keyboard meta-key handling

setvtrgb

Sets the console color map in all virtual terminals

showconsolefont

Shows the current EGA/VGA console screen font

showkey

Reports the scancodes, keycodes, and ASCII codes of the keys pressed on the keyboard

unicode_start

Puts the keyboard and console in UNICODE mode [Don't use this program unless your keymap file is in the ISO-8859-1 encoding. For other encodings, this utility produces incorrect results.]

unicode_stop

Reverts keyboard and console from UNICODE mode

8.64. Libpipeline-1.5.6

The Libpipeline package contains a library for manipulating pipelines of subprocesses in a flexible and convenient way.

Approximate build time: 0.1 SBU
Required disk space: 10 MB

8.64.1. Installation of Libpipeline

Prepare Libpipeline for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.64.2. Contents of Libpipeline

Installed library: libpipeline.so

Short Descriptions

libpipeline

This library is used to safely construct pipelines between subprocesses

8.65. Make-4.3

The Make package contains a program for controlling the generation of executables and other non-source files of a package from source files.

Approximate build time: 0.5 SBU
Required disk space: 14 MB

8.65.1. Installation of Make

Prepare Make for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.65.2. Contents of Make

Installed program: make

Short Descriptions

make

Automatically determines which pieces of a package need to be (re)compiled and then issues the relevant commands

8.66. Patch-2.7.6

The Patch package contains a program for modifying or creating files by applying a patch file typically created by the diff program.

Approximate build time: 0.2 SBU
Required disk space: 12 MB

8.66.1. Installation of Patch

Prepare Patch for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.66.2. Contents of Patch

Installed program: patch

Short Descriptions

patch

Modifies files according to a patch file (A patch file is normally a difference listing created with the diff program. By applying these differences to the original files, patch creates the patched versions.)

8.67. Tar-1.34

The Tar package provides the ability to create tar archives as well as perform various other kinds of archive manipulation. Tar can be used on previously created archives to extract files, to store additional files, or to update or list files which were already stored.

Approximate build time: 1.7 SBU
Required disk space: 40 MB

8.67.1. Installation of Tar

Prepare Tar for compilation:

FORCE_UNSAFE_CONFIGURE=1  \
./configure --prefix=/usr

The meaning of the configure option:

FORCE_UNSAFE_CONFIGURE=1

This forces the test for mknod to be run as root. It is generally considered dangerous to run this test as the root user, but as it is being run on a system that has only been partially built, overriding it is OK.

Compile the package:

make

To test the results, issue:

make check

One test, capabilities: binary store/restore, is known to fail if it is run because LFS lacks selinux, but will be skipped if the host kernel does not support extended attributes on the filesystem used for building LFS.

Install the package:

make install
make -C doc install-html docdir=/usr/share/doc/tar-1.34

8.67.2. Contents of Tar

Installed programs: tar
Installed directory: /usr/share/doc/tar-1.34

Short Descriptions

tar

Creates, extracts files from, and lists the contents of archives, also known as tarballs

8.68. Texinfo-6.8

The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.6 SBU
Required disk space: 114 MB

8.68.1. Installation of Texinfo

Prepare Texinfo for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Optionally, install the components belonging in a TeX installation:

make TEXMF=/usr/share/texmf install-tex

The meaning of the make parameter:

TEXMF=/usr/share/texmf

The TEXMF makefile variable holds the location of the root of the TeX tree if, for example, a TeX package will be installed later.

The Info documentation system uses a plain text file to hold its list of menu entries. The file is located at /usr/share/info/dir. Unfortunately, due to occasional problems in the Makefiles of various packages, it can sometimes get out of sync with the info pages installed on the system. If the /usr/share/info/dir file ever needs to be recreated, the following optional commands will accomplish the task:

pushd /usr/share/info
  rm -v dir
  for f in *
    do install-info $f dir 2>/dev/null
  done
popd

8.68.2. Contents of Texinfo

Installed programs: info, install-info, makeinfo (link to texi2any), pdftexi2dvi, pod2texi, texi2any, texi2dvi, texi2pdf, and texindex
Installed library: MiscXS.so, Parsetexi.so, and XSParagraph.so (all in /usr/lib/texinfo)
Installed directories: /usr/share/texinfo and /usr/lib/texinfo

Short Descriptions

info

Used to read info pages which are similar to man pages, but often go much deeper than just explaining all the available command line options [For example, compare man bison and info bison.]

install-info

Used to install info pages; it updates entries in the info index file

makeinfo

Translates the given Texinfo source documents into info pages, plain text, or HTML

pdftexi2dvi

Used to format the given Texinfo document into a Portable Document Format (PDF) file

pod2texi

Converts Pod to Texinfo format

texi2any

Translate Texinfo source documentation to various other formats

texi2dvi

Used to format the given Texinfo document into a device-independent file that can be printed

texi2pdf

Used to format the given Texinfo document into a Portable Document Format (PDF) file

texindex

Used to sort Texinfo index files

8.69. Vim-9.0.0228

The Vim package contains a powerful text editor.

Approximate build time: 2.5 SBU
Required disk space: 217 MB

Alternatives to Vim

If you prefer another editor—such as Emacs, Joe, or Nano—please refer to https://www.linuxfromscratch.org/blfs/view/11.2/postlfs/editors.html for suggested installation instructions.

8.69.1. Installation of Vim

First, change the default location of the vimrc configuration file to /etc:

echo '#define SYS_VIMRC_FILE "/etc/vimrc"' >> src/feature.h

Prepare vim for compilation:

./configure --prefix=/usr

Compile the package:

make

To prepare the tests, ensure that user tester can write to the source tree:

chown -Rv tester .

Now run the tests as user tester:

su tester -c "LANG=en_US.UTF-8 make -j1 test" &> vim-test.log

The test suite outputs a lot of binary data to the screen. This can cause issues with the settings of the current terminal. The problem can be avoided by redirecting the output to a log file as shown above. A successful test will result in the words "ALL DONE" in the log file at completion.

Install the package:

make install

Many users are used to using vi instead of vim. To allow execution of vim when users habitually enter vi, create a symlink for both the binary and the man page in the provided languages:

ln -sv vim /usr/bin/vi
for L in  /usr/share/man/{,*/}man1/vim.1; do
    ln -sv vim.1 $(dirname $L)/vi.1
done

By default, vim's documentation is installed in /usr/share/vim. The following symlink allows the documentation to be accessed via /usr/share/doc/vim-9.0.0228, making it consistent with the location of documentation for other packages:

ln -sv ../vim/vim90/doc /usr/share/doc/vim-9.0.0228

If an X Window System is going to be installed on the LFS system, it may be necessary to recompile vim after installing X. Vim comes with a GUI version of the editor that requires X and some additional libraries to be installed. For more information on this process, refer to the vim documentation and the vim installation page in the BLFS book at https://www.linuxfromscratch.org/blfs/view/11.2/postlfs/vim.html.

8.69.2. Configuring Vim

By default, vim runs in vi-incompatible mode. This may be new to users who have used other editors in the past. The nocompatible setting is included below to highlight the fact that a new behavior is being used. It also reminds those who would change to compatible mode that it should be the first setting in the configuration file. This is necessary because it changes other settings, and overrides must come after this setting. Create a default vim configuration file by running the following:

cat > /etc/vimrc << "EOF"
" Begin /etc/vimrc

" Ensure defaults are set before customizing settings, not after
source $VIMRUNTIME/defaults.vim
let skip_defaults_vim=1

set nocompatible
set backspace=2
set mouse=
syntax on
if (&term == "xterm") || (&term == "putty")
  set background=dark
endif

" End /etc/vimrc
EOF

The set nocompatible setting makes vim behave in a more useful way (the default) than the vi-compatible manner. Remove the no to keep the old vi behavior. The set backspace=2 setting allows backspacing over line breaks, autoindents, and the start of an insert. The syntax on parameter enables vim's syntax highlighting. The set mouse= setting enables proper pasting of text with the mouse when working in chroot or over a remote connection. Finally, the if statement with the set background=dark setting corrects vim's guess about the background color of some terminal emulators. This gives the highlighting a better color scheme for use on the black background of these programs.

Documentation for other available options can be obtained by running the following command:

vim -c ':options'

Note

By default, vim only installs spell files for the English language. To install spell files for your preferred language, download the *.spl and optionally, the *.sug files for your language and character encoding from ftp://ftp.vim.org/pub/vim/runtime/spell/ and save them to /usr/share/vim/vim90/spell/.

To use these spell files, some configuration in /etc/vimrc is needed, e.g.:

set spelllang=en,ru
set spell

For more information, see the appropriate README file located at the URL above.

8.69.3. Contents of Vim

Installed programs: ex (link to vim), rview (link to vim), rvim (link to vim), vi (link to vim), view (link to vim), vim, vimdiff (link to vim), vimtutor, and xxd
Installed directory: /usr/share/vim

Short Descriptions

ex

Starts vim in ex mode

rview

Is a restricted version of view; no shell commands can be started and view cannot be suspended

rvim

Is a restricted version of vim; no shell commands can be started and vim cannot be suspended

vi

Link to vim

view

Starts vim in read-only mode

vim

Is the editor

vimdiff

Edits two or three versions of a file with vim and shows differences

vimtutor

Teaches the basic keys and commands of vim

xxd

Creates a hex dump of the given file; it can also do the reverse, so it can be used for binary patching

8.70. Eudev-3.2.11

The Eudev package contains programs for dynamic creation of device nodes.

Approximate build time: 0.2 SBU
Required disk space: 83 MB

8.70.1. Installation of Eudev

Prepare Eudev for compilation:

./configure --prefix=/usr           \
            --bindir=/usr/sbin      \
            --sysconfdir=/etc       \
            --enable-manpages       \
            --disable-static

Compile the package:

make

Create some directories now that are needed for tests, but will also be used as a part of installation:

mkdir -pv /usr/lib/udev/rules.d
mkdir -pv /etc/udev/rules.d

To test the results, issue:

make check

Install the package:

make install

Install some custom rules and support files useful in an LFS environment:

tar -xvf ../udev-lfs-20171102.tar.xz
make -f udev-lfs-20171102/Makefile.lfs install

8.70.2. Configuring Eudev

Information about hardware devices is maintained in the /etc/udev/hwdb.d and /usr/lib/udev/hwdb.d directories. Eudev needs that information to be compiled into a binary database /etc/udev/hwdb.bin. Create the initial database:

udevadm hwdb --update

This command needs to be run each time the hardware information is updated.

8.70.3. Contents of Eudev

Installed programs: udevadm and udevd
Installed libraries: libudev.so
Installed directories: /etc/udev, /usr/lib/udev, and /usr/share/doc/udev-udev-lfs-20171102

Short Descriptions

udevadm

Generic udev administration tool: controls the udevd daemon, provides info from the Udev database, monitors uevents, waits for uevents to finish, tests Udev configuration, and triggers uevents for a given device

udevd

A daemon that listens for uevents on the netlink socket, creates devices and runs the configured external programs in response to these uevents

libudev

A library interface to udev device information

/etc/udev

Contains Udev configuration files, device permissions, and rules for device naming

8.71. Man-DB-2.10.2

The Man-DB package contains programs for finding and viewing man pages.

Approximate build time: 0.4 SBU
Required disk space: 40 MB

8.71.1. Installation of Man-DB

Prepare Man-DB for compilation:

./configure --prefix=/usr                         \
            --docdir=/usr/share/doc/man-db-2.10.2 \
            --sysconfdir=/etc                     \
            --disable-setuid                      \
            --enable-cache-owner=bin              \
            --with-browser=/usr/bin/lynx          \
            --with-vgrind=/usr/bin/vgrind         \
            --with-grap=/usr/bin/grap             \
            --with-systemdtmpfilesdir=            \
            --with-systemdsystemunitdir=

The meaning of the configure options:

--disable-setuid

This disables making the man program setuid to user man.

--enable-cache-owner=bin

This makes the system-wide cache files be owned by user bin.

--with-...

These three parameters are used to set some default programs. lynx is a text-based web browser (see BLFS for installation instructions), vgrind converts program sources to Groff input, and grap is useful for typesetting graphs in Groff documents. The vgrind and grap programs are not normally needed for viewing manual pages. They are not part of LFS or BLFS, but you should be able to install them yourself after finishing LFS if you wish to do so.

--with-systemd...

These parameters prevent installing unneeded systemd directories and files.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

8.71.2. Non-English Manual Pages in LFS

The following table shows the character set that Man-DB assumes manual pages installed under /usr/share/man/<ll> will be encoded with. In addition to this, Man-DB correctly determines if manual pages installed in that directory are UTF-8 encoded.

Table 8.1. Expected character encoding of legacy 8-bit manual pages

Language (code) Encoding Language (code) Encoding
Danish (da) ISO-8859-1 Croatian (hr) ISO-8859-2
German (de) ISO-8859-1 Hungarian (hu) ISO-8859-2
English (en) ISO-8859-1 Japanese (ja) EUC-JP
Spanish (es) ISO-8859-1 Korean (ko) EUC-KR
Estonian (et) ISO-8859-1 Lithuanian (lt) ISO-8859-13
Finnish (fi) ISO-8859-1 Latvian (lv) ISO-8859-13
French (fr) ISO-8859-1 Macedonian (mk) ISO-8859-5
Irish (ga) ISO-8859-1 Polish (pl) ISO-8859-2
Galician (gl) ISO-8859-1 Romanian (ro) ISO-8859-2
Indonesian (id) ISO-8859-1 Greek (el) ISO-8859-7
Icelandic (is) ISO-8859-1 Slovak (sk) ISO-8859-2
Italian (it) ISO-8859-1 Slovenian (sl) ISO-8859-2
Norwegian Bokmal (nb) ISO-8859-1 Serbian Latin (sr@latin) ISO-8859-2
Dutch (nl) ISO-8859-1 Serbian (sr) ISO-8859-5
Norwegian Nynorsk (nn) ISO-8859-1 Turkish (tr) ISO-8859-9
Norwegian (no) ISO-8859-1 Ukrainian (uk) KOI8-U
Portuguese (pt) ISO-8859-1 Vietnamese (vi) TCVN5712-1
Swedish (sv) ISO-8859-1 Simplified Chinese (zh_CN) GBK
Belarusian (be) CP1251 Simplified Chinese, Singapore (zh_SG) GBK
Bulgarian (bg) CP1251 Traditional Chinese, Hong Kong (zh_HK) BIG5HKSCS
Czech (cs) ISO-8859-2 Traditional Chinese (zh_TW) BIG5

Note

Manual pages in languages not in the list are not supported.

8.71.3. Contents of Man-DB

Installed programs: accessdb, apropos (link to whatis), catman, lexgrog, man, man-recode, mandb, manpath, and whatis
Installed libraries: libman.so and libmandb.so (both in /usr/lib/man-db)
Installed directories: /usr/lib/man-db, /usr/libexec/man-db, and /usr/share/doc/man-db-2.10.2

Short Descriptions

accessdb

Dumps the whatis database contents in human-readable form

apropos

Searches the whatis database and displays the short descriptions of system commands that contain a given string

catman

Creates or updates the pre-formatted manual pages

lexgrog

Displays one-line summary information about a given manual page

man

Formats and displays the requested manual page

man-recode

Converts manual pages to another encoding

mandb

Creates or updates the whatis database

manpath

Displays the contents of $MANPATH or (if $MANPATH is not set) a suitable search path based on the settings in man.conf and the user's environment

whatis

Searches the whatis database and displays the short descriptions of system commands that contain the given keyword as a separate word

libman

Contains run-time support for man

libmandb

Contains run-time support for man

8.72. Procps-ng-4.0.0

The Procps-ng package contains programs for monitoring processes.

Approximate build time: 0.1 SBU
Required disk space: 19 MB

8.72.1. Installation of Procps-ng

Prepare procps-ng for compilation:

./configure --prefix=/usr                            \
            --docdir=/usr/share/doc/procps-ng-4.0.0 \
            --disable-static                         \
            --disable-kill

The meaning of the configure option:

--disable-kill

This switch disables building the kill command that will be installed by the Util-linux package.

Compile the package:

make

To run the test suite, run:

make check

One test named free with commit may fail if some applications with a custom memory allocator (for example, JVM and Web browsers) are running on the host distro.

Install the package:

make install

8.72.2. Contents of Procps-ng

Installed programs: free, pgrep, pidof, pkill, pmap, ps, pwdx, slabtop, sysctl, tload, top, uptime, vmstat, w, and watch
Installed library: libproc-2.so
Installed directories: /usr/include/procps and /usr/share/doc/procps-ng-4.0.0

Short Descriptions

free

Reports the amount of free and used memory (both physical and swap memory) in the system

pgrep

Looks up processes based on their name and other attributes

pidof

Reports the PIDs of the given programs

pkill

Signals processes based on their name and other attributes

pmap

Reports the memory map of the given process

ps

Lists the current running processes

pwait

Waits for a process to finish before executing.

pwdx

Reports the current working directory of a process

slabtop

Displays detailed kernel slab cache information in real time

sysctl

Modifies kernel parameters at run time

tload

Prints a graph of the current system load average

top

Displays a list of the most CPU intensive processes; it provides an ongoing look at processor activity in real time

uptime

Reports how long the system has been running, how many users are logged on, and the system load averages

vmstat

Reports virtual memory statistics, giving information about processes, memory, paging, block Input/Output (IO), traps, and CPU activity

w

Shows which users are currently logged on, where, and since when

watch

Runs a given command repeatedly, displaying the first screen-full of its output; this allows a user to watch the output change over time

libproc-2

Contains the functions used by most programs in this package

8.73. Util-linux-2.38.1

The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.

Approximate build time: 1.0 SBU
Required disk space: 283 MB

8.73.1. Installation of Util-linux

Prepare Util-linux for compilation:

./configure ADJTIME_PATH=/var/lib/hwclock/adjtime   \
            --bindir=/usr/bin    \
            --libdir=/usr/lib    \
            --sbindir=/usr/sbin  \
            --docdir=/usr/share/doc/util-linux-2.38.1 \
            --disable-chfn-chsh  \
            --disable-login      \
            --disable-nologin    \
            --disable-su         \
            --disable-setpriv    \
            --disable-runuser    \
            --disable-pylibmount \
            --disable-static     \
            --without-python     \
            --without-systemd    \
            --without-systemdsystemunitdir

The --disable and --without options prevent warnings about building components that require packages not in LFS or are inconsistent with programs installed by other packages.

Compile the package:

make

If desired, run the test suite as a non-root user:

Warning

Running the test suite as the root user can be harmful to your system. To run it, the CONFIG_SCSI_DEBUG option for the kernel must be available in the currently running system and must be built as a module. Building it into the kernel will prevent booting. For complete coverage, other BLFS packages must be installed. If desired, this test can be run after rebooting into the completed LFS system and running:

bash tests/run.sh --srcdir=$PWD --builddir=$PWD
chown -Rv tester .
su tester -c "make -k check"

The hardlink tests will fail if the host's kernel does not have the option CONFIG_CRYPTO_USER_API_HASH set.

Install the package:

make install

8.73.2. Contents of Util-linux

Installed programs: addpart, agetty, blkdiscard, blkid, blkzone, blockdev, cal, cfdisk, chcpu, chmem, choom, chrt, col, colcrt, colrm, column, ctrlaltdel, delpart, dmesg, eject, fallocate, fdisk, fincore, findfs, findmnt, flock, fsck, fsck.cramfs, fsck.minix, fsfreeze, fstrim, getopt, hexdump, hwclock, i386, ionice, ipcmk, ipcrm, ipcs, irqtop, isosize, kill, last, lastb (link to last), ldattach, linux32, linux64, logger, look, losetup, lsblk, lscpu, lsipc, lsirq, lslocks, lslogins, lsmem, lsns, mcookie, mesg, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount, mountpoint, namei, nsenter, partx, pivot_root, prlimit, readprofile, rename, renice, resizepart, rev, rfkill, rtcwake, script, scriptlive, scriptreplay, setarch, setsid, setterm, sfdisk, sulogin, swaplabel, swapoff (link to swapon), swapon, switch_root, taskset, uclampset, ul, umount, uname26, unshare, utmpdump, uuidd, uuidgen, uuidparse, wall, wdctl, whereis, wipefs, x86_64, and zramctl
Installed libraries: libblkid.so, libfdisk.so, libmount.so, libsmartcols.so, and libuuid.so
Installed directories: /usr/include/blkid, /usr/include/libfdisk, /usr/include/libmount, /usr/include/libsmartcols, /usr/include/uuid, /usr/share/doc/util-linux-2.38.1, and /var/lib/hwclock

Short Descriptions

addpart

Informs the Linux kernel of new partitions

agetty

Opens a tty port, prompts for a login name, and then invokes the login program

blkdiscard

Discards sectors on a device

blkid

A command line utility to locate and print block device attributes

blkzone

Runs zone command on the given block device

blockdev

Allows users to call block device ioctls from the command line

cal

Displays a simple calendar

cfdisk

Manipulates the partition table of the given device

chcpu

Modifies the state of CPUs

chmem

Configures memory

choom

Displays and adjusts OOM-killer score

chrt

Manipulates real-time attributes of a process

col

Filters out reverse line feeds

colcrt

Filters nroff output for terminals that lack some capabilities, such as overstriking and half-lines

colrm

Filters out the given columns

column

Formats a given file into multiple columns

ctrlaltdel

Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset

delpart

Asks the Linux kernel to remove a partition

dmesg

Dumps the kernel boot messages

eject

Ejects removable media

fallocate

Preallocates space to a file

fdisk

Manipulates the partition table of the given device

fincore

Counts pages of file contents in core

findfs

Finds a file system by label or Universally Unique Identifier (UUID)

findmnt

Is a command line interface to the libmount library for work with mountinfo, fstab and mtab files

flock

Acquires a file lock and then executes a command with the lock held

fsck

Is used to check, and optionally repair, file systems

fsck.cramfs

Performs a consistency check on the Cramfs file system on the given device

fsck.minix

Performs a consistency check on the Minix file system on the given device

fsfreeze

Is a very simple wrapper around FIFREEZE/FITHAW ioctl kernel driver operations

fstrim

Discards unused blocks on a mounted filesystem

getopt

Parses options in the given command line

hexdump

Dumps the given file in hexadecimal or in another given format

hwclock

Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic Input-Output System (BIOS) clock

i386

A symbolic link to setarch

ionice

Gets or sets the io scheduling class and priority for a program

ipcmk

Creates various IPC resources

ipcrm

Removes the given Inter-Process Communication (IPC) resource

ipcs

Provides IPC status information

irqtop

Displays kernel interrupt counter information in top(1) style view

isosize

Reports the size of an iso9660 file system

kill

Sends signals to processes

last

Shows which users last logged in (and out), searching back through the /var/log/wtmp file; it also shows system boots, shutdowns, and run-level changes

lastb

Shows the failed login attempts, as logged in /var/log/btmp

ldattach

Attaches a line discipline to a serial line

linux32

A symbolic link to setarch

linux64

A symbolic link to setarch

logger

Enters the given message into the system log

look

Displays lines that begin with the given string

losetup

Sets up and controls loop devices

lsblk

Lists information about all or selected block devices in a tree-like format

lscpu

Prints CPU architecture information

lsipc

Prints information on IPC facilities currently employed in the system

lsirq

Displays kernel interrupt counter information

lslocks

Lists local system locks

lslogins

Lists information about users, groups and system accounts

lsmem

Lists the ranges of available memory with their online status

lsns

Lists namespaces

mcookie

Generates magic cookies (128-bit random hexadecimal numbers) for xauth

mesg

Controls whether other users can send messages to the current user's terminal

mkfs

Builds a file system on a device (usually a hard disk partition)

mkfs.bfs

Creates a Santa Cruz Operations (SCO) bfs file system

mkfs.cramfs

Creates a cramfs file system

mkfs.minix

Creates a Minix file system

mkswap

Initializes the given device or file to be used as a swap area

more

A filter for paging through text one screen at a time

mount

Attaches the file system on the given device to a specified directory in the file-system tree

mountpoint

Checks if the directory is a mountpoint

namei

Shows the symbolic links in the given pathnames

nsenter

Runs a program with namespaces of other processes

partx

Tells the kernel about the presence and numbering of on-disk partitions

pivot_root

Makes the given file system the new root file system of the current process

prlimit

Get and set a process' resource limits

readprofile

Reads kernel profiling information

rename

Renames the given files, replacing a given string with another

renice

Alters the priority of running processes

resizepart

Asks the Linux kernel to resize a partition

rev

Reverses the lines of a given file

rkfill

Tool for enabling and disabling wireless devices

rtcwake

Used to enter a system sleep state until specified wakeup time

script

Makes a typescript of a terminal session

scriptlive

Re-run session typescripts using timing information

scriptreplay

Plays back typescripts using timing information

setarch

Changes reported architecture in a new program environment and sets personality flags

setsid

Runs the given program in a new session

setterm

Sets terminal attributes

sfdisk

A disk partition table manipulator

sulogin

Allows root to log in; it is normally invoked by init when the system goes into single user mode

swaplabel

Allows to change swaparea UUID and label

swapoff

Disables devices and files for paging and swapping

swapon

Enables devices and files for paging and swapping and lists the devices and files currently in use

switch_root

Switches to another filesystem as the root of the mount tree

taskset

Retrieves or sets a process' CPU affinity

uclampset

Manipulate the utilization clamping attributes of the system or a process

ul

A filter for translating underscores into escape sequences indicating underlining for the terminal in use

umount

Disconnects a file system from the system's file tree

uname26

A symbolic link to setarch

unshare

Runs a program with some namespaces unshared from parent

utmpdump

Displays the content of the given login file in a more user-friendly format

uuidd

A daemon used by the UUID library to generate time-based UUIDs in a secure and guaranteed-unique fashion

uuidgen

Creates new UUIDs. Each new UUID can reasonably be considered unique among all UUIDs created, on the local system and on other systems, in the past and in the future

uuidparse

An utility to parse unique identifiers

wall

Displays the contents of a file or, by default, its standard input, on the terminals of all currently logged in users

wdctl

Shows hardware watchdog status

whereis

Reports the location of the binary, source, and man page for the given command

wipefs

Wipes a filesystem signature from a device

x86_64

A symbolic link to setarch

zramctl

A program to set up and control zram (compressed ram disk) devices

libblkid

Contains routines for device identification and token extraction

libfdisk

Contains routines for manipulating partition tables

libmount

Contains routines for block device mounting and unmounting

libsmartcols

Contains routines for aiding screen output in tabular form

libuuid

Contains routines for generating unique identifiers for objects that may be accessible beyond the local system

8.74. E2fsprogs-1.46.5

The e2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3 and ext4 journaling file systems.

Approximate build time: 4.4 SBU on a spinning disk, 1.2 SBU on an SSD
Required disk space: 94 MB

8.74.1. Installation of E2fsprogs

The e2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:

mkdir -v build
cd       build

Prepare e2fsprogs for compilation:

../configure --prefix=/usr           \
             --sysconfdir=/etc       \
             --enable-elf-shlibs     \
             --disable-libblkid      \
             --disable-libuuid       \
             --disable-uuidd         \
             --disable-fsck

The meaning of the configure options:

--enable-elf-shlibs

This creates the shared libraries which some programs in this package use.

--disable-*

This prevents e2fsprogs from building and installing the libuuid and libblkid libraries, the uuidd daemon, and the fsck wrapper, as util-linux installs more recent versions.

Compile the package:

make

To run the tests, issue:

make check

One test, u_direct_io, is known to fail on some systems.

Install the package:

make install

Remove useless static libraries:

rm -fv /usr/lib/{libcom_err,libe2p,libext2fs,libss}.a

This package installs a gzipped .info file but doesn't update the system-wide dir file. Unzip this file and then update the system dir file using the following commands:

gunzip -v /usr/share/info/libext2fs.info.gz
install-info --dir-file=/usr/share/info/dir /usr/share/info/libext2fs.info

If desired, create and install some additional documentation by issuing the following commands:

makeinfo -o      doc/com_err.info ../lib/et/com_err.texinfo
install -v -m644 doc/com_err.info /usr/share/info
install-info --dir-file=/usr/share/info/dir /usr/share/info/com_err.info

8.74.2. Contents of E2fsprogs

Installed programs: badblocks, chattr, compile_et, debugfs, dumpe2fs, e2freefrag, e2fsck, e2image, e2label, e2mmpstatus, e2scrub, e2scrub_all, e2undo, e4crypt, e4defrag, filefrag, fsck.ext2, fsck.ext3, fsck.ext4, logsave, lsattr, mk_cmds, mke2fs, mkfs.ext2, mkfs.ext3, mkfs.ext4, mklost+found, resize2fs, and tune2fs
Installed libraries: libcom_err.so, libe2p.so, libext2fs.so, and libss.so
Installed directories: /usr/include/e2p, /usr/include/et, /usr/include/ext2fs, /usr/include/ss, /usr/lib/e2fsprogs, /usr/share/et, and /usr/share/ss

Short Descriptions

badblocks

Searches a device (usually a disk partition) for bad blocks

chattr

Changes the attributes of files on an ext2 file system; it also changes ext3 file systems, the journaling version of ext2 file systems

compile_et

An error table compiler; it converts a table of error-code names and messages into a C source file suitable for use with the com_err library

debugfs

A file system debugger; it can be used to examine and change the state of an ext2 file system

dumpe2fs

Prints the super block and blocks group information for the file system present on a given device

e2freefrag

Reports free space fragmentation information

e2fsck

Is used to check, and optionally repair ext2 file systems and ext3 file systems

e2image

Is used to save critical ext2 file system data to a file

e2label

Displays or changes the file system label on the ext2 file system present on a given device

e2mmpstatus

Checks MMP status of an ext4 filesystem

e2scrub

Checks the contents of a mounted ext[234] filesystem

e2scrub_all

Checks all mounted ext[234] filesystems for errors

e2undo

Replays the undo log undo_log for an ext2/ext3/ext4 filesystem found on a device [This can be used to undo a failed operation by an e2fsprogs program.]

e4crypt

Ext4 filesystem encryption utility

e4defrag

Online defragmenter for ext4 filesystems

filefrag

Reports on how badly fragmented a particular file might be

fsck.ext2

By default checks ext2 file systems and is a hard link to e2fsck

fsck.ext3

By default checks ext3 file systems and is a hard link to e2fsck

fsck.ext4

By default checks ext4 file systems and is a hard link to e2fsck

logsave

Saves the output of a command in a log file

lsattr

Lists the attributes of files on a second extended file system

mk_cmds

Converts a table of command names and help messages into a C source file suitable for use with the libss subsystem library

mke2fs

Creates an ext2 or ext3 file system on the given device

mkfs.ext2

By default creates ext2 file systems and is a hard link to mke2fs

mkfs.ext3

By default creates ext3 file systems and is a hard link to mke2fs

mkfs.ext4

By default creates ext4 file systems and is a hard link to mke2fs

mklost+found

Used to create a lost+found directory on an ext2 file system; it pre-allocates disk blocks to this directory to lighten the task of e2fsck

resize2fs

Can be used to enlarge or shrink an ext2 file system

tune2fs

Adjusts tunable file system parameters on an ext2 file system

libcom_err

The common error display routine

libe2p

Used by dumpe2fs, chattr, and lsattr

libext2fs

Contains routines to enable user-level programs to manipulate an ext2 file system

libss

Used by debugfs

8.75. Sysklogd-1.5.1

The sysklogd package contains programs for logging system messages, such as those given by the kernel when unusual things happen.

Approximate build time: less than 0.1 SBU
Required disk space: 0.6 MB

8.75.1. Installation of Sysklogd

First, fix problems that causes a segmentation fault under some conditions in klogd and fix an obsolete program construct:

sed -i '/Error loading kernel symbols/{n;n;d}' ksym_mod.c
sed -i 's/union wait/int/' syslogd.c

Compile the package:

make

This package does not come with a test suite.

Install the package:

make BINDIR=/sbin install

8.75.2. Configuring Sysklogd

Create a new /etc/syslog.conf file by running the following:

cat > /etc/syslog.conf << "EOF"
# Begin /etc/syslog.conf

auth,authpriv.* -/var/log/auth.log
*.*;auth,authpriv.none -/var/log/sys.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
*.emerg *

# End /etc/syslog.conf
EOF

8.75.3. Contents of Sysklogd

Installed programs: klogd and syslogd

Short Descriptions

klogd

A system daemon for intercepting and logging kernel messages

syslogd

Logs the messages that system programs offer for logging [Every logged message contains at least a date stamp and a hostname, and normally the program's name too, but that depends on how trusting the logging daemon is told to be.]

8.76. Sysvinit-3.04

The Sysvinit package contains programs for controlling the startup, running, and shutdown of the system.

Approximate build time: less than 0.1 SBU
Required disk space: 2.7 MB

8.76.1. Installation of Sysvinit

First, apply a patch that removes several programs installed by other packages, clarifies a message, and fixes a compiler warning:

patch -Np1 -i ../sysvinit-3.04-consolidated-1.patch

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

8.76.2. Contents of Sysvinit

Installed programs: bootlogd, fstab-decode, halt, init, killall5, poweroff (link to halt), reboot (link to halt), runlevel, shutdown, and telinit (link to init)

Short Descriptions

bootlogd

Logs boot messages to a log file

fstab-decode

Run a command with fstab-encoded arguments

halt

Normally invokes shutdown with the -h option, except when already in run-level 0, then it tells the kernel to halt the system; it notes in the file /var/log/wtmp that the system is being brought down

init

The first process to be started when the kernel has initialized the hardware which takes over the boot process and starts all the proceses specified in its configuration file

killall5

Sends a signal to all processes, except the processes in its own session so it will not kill its parent shell

poweroff

Tells the kernel to halt the system and switch off the computer (see halt)

reboot

Tells the kernel to reboot the system (see halt)

runlevel

Reports the previous and the current run-level, as noted in the last run-level record in /run/utmp

shutdown

Brings the system down in a secure way, signaling all processes and notifying all logged-in users

telinit

Tells init which run-level to change to

8.77. About Debugging Symbols

Most programs and libraries are, by default, compiled with debugging symbols included (with gcc's -g option). This means that when debugging a program or library that was compiled with debugging information, the debugger can provide not only memory addresses, but also the names of the routines and variables.

However, the inclusion of these debugging symbols enlarges a program or library significantly. The following is an example of the amount of space these symbols occupy:

  • A bash binary with debugging symbols: 1200 KB

  • A bash binary without debugging symbols: 480 KB

  • Glibc and GCC files (/lib and /usr/lib) with debugging symbols: 87 MB

  • Glibc and GCC files without debugging symbols: 16 MB

Sizes may vary depending on which compiler and C library were used, but when comparing programs with and without debugging symbols, the difference will usually be a factor between two and five.

Because most users will never use a debugger on their system software, a lot of disk space can be regained by removing these symbols. The next section shows how to strip all debugging symbols from the programs and libraries.

8.78. Stripping

This section is optional. If the intended user is not a programmer and does not plan to do any debugging on the system software, the system size can be decreased by about 2 GB by removing the debugging symbols and unneeded symbol table entries from binaries and libraries. This causes no inconvenience other than not being able to debug the software fully anymore.

Most people who use the commands mentioned below do not experience any difficulties. However, it is easy to make a typo and render the new system unusable, so before running the strip commands, it is a good idea to make a backup of the LFS system in its current state.

A strip command with --strip-unneeded option removes all debug symbols from a binary or library. And, it removes all symbol table entries not needed by the linker (for static libraries) or dynamic linker (for dynamic-linked binaries and shared libraries).

The debugging symbols for selected libraries are placed in separate files. This debugging information is needed if running regression tests that use valgrind or gdb later in BLFS.

Note that strip will overwrite the binary or library file it is processing. This can crash the processes using code or data from the file. If the process running strip itself is affected, the binary or library being stripped can be destroyed and can make the system completely unusable. To avoid it, we'll copy some libraries and binaries into /tmp, strip them there, and install them back with the install command. Read the related entry in Section 8.2.1, “Upgrade Issues” for the rationale to use the install command here.

Note

The ELF loader's name is ld-linux-x86-64.so.2 on 64-bit systems and ld-linux.so.2 on 32-bit systems. The construct below selects the correct name for the current architecture, excluding anything ending with g, in case the commands below have already been run.

save_usrlib="$(cd /usr/lib; ls ld-linux*[^g])
             libc.so.6
             libthread_db.so.1
             libquadmath.so.0.0.0
             libstdc++.so.6.0.30
             libitm.so.1.0.0
             libatomic.so.1.2.0"

cd /usr/lib

for LIB in $save_usrlib; do
    objcopy --only-keep-debug $LIB $LIB.dbg
    cp $LIB /tmp/$LIB
    strip --strip-unneeded /tmp/$LIB
    objcopy --add-gnu-debuglink=$LIB.dbg /tmp/$LIB
    install -vm755 /tmp/$LIB /usr/lib
    rm /tmp/$LIB
done

online_usrbin="bash find strip"
online_usrlib="libbfd-2.39.so
               libhistory.so.8.1
               libncursesw.so.6.3
               libm.so.6
               libreadline.so.8.1
               libz.so.1.2.12
               $(cd /usr/lib; find libnss*.so* -type f)"

for BIN in $online_usrbin; do
    cp /usr/bin/$BIN /tmp/$BIN
    strip --strip-unneeded /tmp/$BIN
    install -vm755 /tmp/$BIN /usr/bin
    rm /tmp/$BIN
done

for LIB in $online_usrlib; do
    cp /usr/lib/$LIB /tmp/$LIB
    strip --strip-unneeded /tmp/$LIB
    install -vm755 /tmp/$LIB /usr/lib
    rm /tmp/$LIB
done

for i in $(find /usr/lib -type f -name \*.so* ! -name \*dbg) \
         $(find /usr/lib -type f -name \*.a)                 \
         $(find /usr/{bin,sbin,libexec} -type f); do
    case "$online_usrbin $online_usrlib $save_usrlib" in
        *$(basename $i)* )
            ;;
        * ) strip --strip-unneeded $i
            ;;
    esac
done

unset BIN LIB save_usrlib online_usrbin online_usrlib

A large number of files will be reported as having their file format not recognized. These warnings can be safely ignored. They indicate that those files are scripts instead of binaries.

8.79. Cleaning Up

Finally, clean up some extra files left around from running tests:

rm -rf /tmp/*

There are also several files installed in the /usr/lib and /usr/libexec directories with a file name extension of .la. These are "libtool archive" files. As already said, they are only useful when linking with static libraries. They are unneeded, and potentially harmful, when using dynamic shared libraries, specially when using also non-autotools build systems. To remove them, run:

find /usr/lib /usr/libexec -name \*.la -delete

For more information about libtool archive files, see the BLFS section "About Libtool Archive (.la) files".

The compiler built in Chapter 6 and Chapter 7 is still partially installed and not needed anymore. Remove it with:

find /usr -depth -name $(uname -m)-lfs-linux-gnu\* | xargs rm -rf

Finally, remove the temporary 'tester' user account created at the beginning of the previous chapter.

userdel -r tester

Chapter 9. System Configuration

9.1. Introduction

Booting a Linux system involves several tasks. The process must mount both virtual and real file systems, initialize devices, activate swap, check file systems for integrity, mount any swap partitions or files, set the system clock, bring up networking, start any daemons required by the system, and accomplish any other custom tasks needed by the user. This process must be organized to ensure the tasks are performed in the correct order but, at the same time, be executed as fast as possible.

9.1.1. System V

System V is the classic boot process that has been used in Unix and Unix-like systems such as Linux since about 1983. It consists of a small program, init, that sets up basic programs such as login (via getty) and runs a script. This script, usually named rc, controls the execution of a set of additional scripts that perform the tasks required to initialize the system.

The init program is controlled by the /etc/inittab file and is organized into run levels that can be run by the user. In LFS, they are used as follows:

0 — halt
1 — Single user mode
2 — User definable
3 — Full multiuser mode
4 — User definable
5 — Full multiuser mode with display manager
6 — reboot

The usual default run level is 3 or 5.

Advantages

  • Established, well understood system.

  • Easy to customize.

Disadvantages

  • May be slower to boot. A medium speed base LFS system takes 8-12 seconds where the boot time is measured from the first kernel message to the login prompt. Network connectivity is typically established about 2 seconds after the login prompt.

  • Serial processing of boot tasks. This is related to the previous point. A delay in any process such as a file system check, will delay the entire boot process.

  • Does not directly support advanced features like control groups (cgroups), and per-user fair share scheduling.

  • Adding scripts requires manual, static sequencing decisions.

9.2. LFS-Bootscripts-20220723

The LFS-Bootscripts package contains a set of scripts to start/stop the LFS system at bootup/shutdown. The configuration files and procedures needed to customize the boot process are described in the following sections.

Approximate build time: less than 0.1 SBU
Required disk space: 244 KB

9.2.1. Installation of LFS-Bootscripts

Install the package:

make install

9.2.2. Contents of LFS-Bootscripts

Installed scripts: checkfs, cleanfs, console, functions, halt, ifdown, ifup, localnet, modules, mountfs, mountvirtfs, network, rc, reboot, sendsignals, setclock, ipv4-static, swap, sysctl, sysklogd, template, udev, and udev_retry
Installed directories: /etc/rc.d, /etc/init.d (symbolic link), /etc/sysconfig, /lib/services, /lib/lsb (symbolic link)

Short Descriptions

checkfs

Checks the integrity of the file systems before they are mounted (with the exception of journal and network based file systems)

cleanfs

Removes files that should not be preserved between reboots, such as those in /run/ and /var/lock/; it re-creates /run/utmp and removes the possibly present /etc/nologin, /fastboot, and /forcefsck files

console

Loads the correct keymap table for the desired keyboard layout; it also sets the screen font

functions

Contains common functions, such as error and status checking, that are used by several bootscripts

halt

Halts the system

ifdown

Stops a network device

ifup

Initializes a network device

localnet

Sets up the system's hostname and local loopback device

modules

Loads kernel modules listed in /etc/sysconfig/modules, using arguments that are also given there

mountfs

Mounts all file systems, except ones that are marked noauto or are network based

mountvirtfs

Mounts virtual kernel file systems, such as proc

network

Sets up network interfaces, such as network cards, and sets up the default gateway (where applicable)

rc

The master run-level control script; it is responsible for running all the other bootscripts one-by-one, in a sequence determined by the name of the symbolic links being processed

reboot

Reboots the system

sendsignals

Makes sure every process is terminated before the system reboots or halts

setclock

Resets the kernel clock to local time in case the hardware clock is not set to UTC time

ipv4-static

Provides the functionality needed to assign a static Internet Protocol (IP) address to a network interface

swap

Enables and disables swap files and partitions

sysctl

Loads system configuration values from /etc/sysctl.conf, if that file exists, into the running kernel

sysklogd

Starts and stops the system and kernel log daemons

template

A template to create custom bootscripts for other daemons

udev

Prepares the /dev directory and starts Udev

udev_retry

Retries failed udev uevents, and copies generated rules files from /run/udev to /etc/udev/rules.d if required

9.3. Overview of Device and Module Handling

In Chapter 8, we installed the udev package when eudev was built. Before we go into the details regarding how this works, a brief history of previous methods of handling devices is in order.

Linux systems in general traditionally used a static device creation method, whereby a great many device nodes were created under /dev (sometimes literally thousands of nodes), regardless of whether the corresponding hardware devices actually existed. This was typically done via a MAKEDEV script, which contains a number of calls to the mknod program with the relevant major and minor device numbers for every possible device that might exist in the world.

Using the udev method, only those devices which are detected by the kernel get device nodes created for them. Because these device nodes will be created each time the system boots, they will be stored on a devtmpfs file system (a virtual file system that resides entirely in system memory). Device nodes do not require much space, so the memory that is used is negligible.

9.3.1. History

In February 2000, a new filesystem called devfs was merged into the 2.3.46 kernel and was made available during the 2.4 series of stable kernels. Although it was present in the kernel source itself, this method of creating devices dynamically never received overwhelming support from the core kernel developers.

The main problem with the approach adopted by devfs was the way it handled device detection, creation, and naming. The latter issue, that of device node naming, was perhaps the most critical. It is generally accepted that if device names are allowed to be configurable, then the device naming policy should be up to a system administrator, not imposed on them by any particular developer(s). The devfs file system also suffered from race conditions that were inherent in its design and could not be fixed without a substantial revision to the kernel. It was marked as deprecated for a long period – due to a lack of maintenance – and was finally removed from the kernel in June, 2006.

With the development of the unstable 2.5 kernel tree, later released as the 2.6 series of stable kernels, a new virtual filesystem called sysfs came to be. The job of sysfs is to export a view of the system's hardware configuration to userspace processes. With this userspace-visible representation, the possibility of developing a userspace replacement for devfs became much more realistic.

9.3.2. Udev Implementation

9.3.2.1. Sysfs

The sysfs filesystem was mentioned briefly above. One may wonder how sysfs knows about the devices present on a system and what device numbers should be used for them. Drivers that have been compiled into the kernel directly register their objects with a sysfs (devtmpfs internally) as they are detected by the kernel. For drivers compiled as modules, this registration will happen when the module is loaded. Once the sysfs filesystem is mounted (on /sys), data which the drivers register with sysfs are available to userspace processes and to udevd for processing (including modifications to device nodes).

9.3.2.2. Device Node Creation

Device files are created by the kernel by the devtmpfs filesystem. Any driver that wishes to register a device node will go through the devtmpfs (via the driver core) to do it. When a devtmpfs instance is mounted on /dev, the device node will initially be created with a fixed name, permissions, and owner.

A short time later, the kernel will send a uevent to udevd. Based on the rules specified in the files within the /etc/udev/rules.d, /usr/lib/udev/rules.d, and /run/udev/rules.d directories, udevd will create additional symlinks to the device node, or change its permissions, owner, or group, or modify the internal udevd database entry (name) for that object.

The rules in these three directories are numbered and all three directories are merged together. If udevd can't find a rule for the device it is creating, it will leave the permissions and ownership at whatever devtmpfs used initially.

9.3.2.3. Module Loading

Device drivers compiled as modules may have aliases built into them. Aliases are visible in the output of the modinfo program and are usually related to the bus-specific identifiers of devices supported by a module. For example, the snd-fm801 driver supports PCI devices with vendor ID 0x1319 and device ID 0x0801, and has an alias of pci:v00001319d00000801sv*sd*bc04sc01i*. For most devices, the bus driver exports the alias of the driver that would handle the device via sysfs. E.g., the /sys/bus/pci/devices/0000:00:0d.0/modalias file might contain the string pci:v00001319d00000801sv00001319sd00001319bc04sc01i00. The default rules provided with udev will cause udevd to call out to /sbin/modprobe with the contents of the MODALIAS uevent environment variable (which should be the same as the contents of the modalias file in sysfs), thus loading all modules whose aliases match this string after wildcard expansion.

In this example, this means that, in addition to snd-fm801, the obsolete (and unwanted) forte driver will be loaded if it is available. See below for ways in which the loading of unwanted drivers can be prevented.

The kernel itself is also able to load modules for network protocols, filesystems, and NLS support on demand.

9.3.2.4. Handling Hotpluggable/Dynamic Devices

When you plug in a device, such as a Universal Serial Bus (USB) MP3 player, the kernel recognizes that the device is now connected and generates a uevent. This uevent is then handled by udevd as described above.

9.3.3. Problems with Loading Modules and Creating Devices

There are a few possible problems when it comes to automatically creating device nodes.

9.3.3.1. A kernel module is not loaded automatically

Udev will only load a module if it has a bus-specific alias and the bus driver properly exports the necessary aliases to sysfs. In other cases, one should arrange module loading by other means. With Linux-5.19.2, udev is known to load properly-written drivers for INPUT, IDE, PCI, USB, SCSI, SERIO, and FireWire devices.

To determine if the device driver you require has the necessary support for udev, run modinfo with the module name as the argument. Now try locating the device directory under /sys/bus and check whether there is a modalias file there.

If the modalias file exists in sysfs, the driver supports the device and can talk to it directly, but doesn't have the alias, it is a bug in the driver. Load the driver without the help from udev and expect the issue to be fixed later.

If there is no modalias file in the relevant directory under /sys/bus, this means that the kernel developers have not yet added modalias support to this bus type. With Linux-5.19.2, this is the case with ISA busses. Expect this issue to be fixed in later kernel versions.

Udev is not intended to load wrapper drivers such as snd-pcm-oss and non-hardware drivers such as loop at all.

9.3.3.2. A kernel module is not loaded automatically, and udev is not intended to load it

If the wrapper module only enhances the functionality provided by some other module (e.g., snd-pcm-oss enhances the functionality of snd-pcm by making the sound cards available to OSS applications), configure modprobe to load the wrapper after udev loads the wrapped module. To do this, add a softdep line to the corresponding /etc/modprobe.d/<filename>.conf file. For example:

softdep snd-pcm post: snd-pcm-oss

Note that the softdep command also allows pre: dependencies, or a mixture of both pre: and post: dependencies. See the modprobe.d(5) manual page for more information on softdep syntax and capabilities.

If the module in question is not a wrapper and is useful by itself, configure the modules bootscript to load this module on system boot. To do this, add the module name to the /etc/sysconfig/modules file on a separate line. This works for wrapper modules too, but is suboptimal in that case.

9.3.3.3. Udev loads some unwanted module

Either don't build the module, or blacklist it in a /etc/modprobe.d/blacklist.conf file as done with the forte module in the example below:

blacklist forte

Blacklisted modules can still be loaded manually with the explicit modprobe command.

9.3.3.4. Udev creates a device incorrectly, or makes a wrong symlink

This usually happens if a rule unexpectedly matches a device. For example, a poorly-written rule can match both a SCSI disk (as desired) and the corresponding SCSI generic device (incorrectly) by vendor. Find the offending rule and make it more specific, with the help of the udevadm info command.

9.3.3.5. Udev rule works unreliably

This may be another manifestation of the previous problem. If not, and your rule uses sysfs attributes, it may be a kernel timing issue, to be fixed in later kernels. For now, you can work around it by creating a rule that waits for the used sysfs attribute and appending it to the /etc/udev/rules.d/10-wait_for_sysfs.rules file (create this file if it does not exist). Please notify the LFS Development list if you do so and it helps.

9.3.3.6. Udev does not create a device

Further text assumes that the driver is built statically into the kernel or already loaded as a module, and that you have already checked that udev doesn't create a misnamed device.

Udev has no information needed to create a device node if a kernel driver does not export its data to sysfs. This is most common with third party drivers from outside the kernel tree. Create a static device node in /usr/lib/udev/devices with the appropriate major/minor numbers (see the file devices.txt inside the kernel documentation or the documentation provided by the third party driver vendor). The static device node will be copied to /dev by udev.

9.3.3.7. Device naming order changes randomly after rebooting

This is due to the fact that udev, by design, handles uevents and loads modules in parallel, and thus in an unpredictable order. This will never be fixed. You should not rely upon the kernel device names being stable. Instead, create your own rules that make symlinks with stable names based on some stable attributes of the device, such as a serial number or the output of various *_id utilities installed by udev. See Section 9.4, “Managing Devices” and Section 9.5, “General Network Configuration” for examples.

9.3.4. Useful Reading

Additional helpful documentation is available at the following sites:

9.4. Managing Devices

9.4.1. Network Devices

Udev, by default, names network devices according to Firmware/BIOS data or physical characteristics like the bus, slot, or MAC address. The purpose of this naming convention is to ensure that network devices are named consistently and not based on the time the network card was discovered. For example, on a computer having two network cards made by Intel and Realtek, the network card manufactured by Intel may become eth0 and the Realtek card becomes eth1. In some cases, after a reboot the cards could get renumbered the other way around.

In the new naming scheme, typical network device names would then be something like enp5s0 or wlp3s0. If this naming convention is not desired, the traditional naming scheme or a custom scheme can be implemented.

9.4.1.1. Disabling Persistent Naming on the Kernel Command Line

The traditional naming scheme using eth0, eth1, etc can be restored by adding net.ifnames=0 on the kernel command line. This is most appropriate for those systems that have only one ethernet device of the same type. Laptops often have multiple ethernet connections that are named eth0 and wlan0 and are also candidates for this method. The command line is passed in the GRUB configuration file. See Section 10.4.4, “Creating the GRUB Configuration File”.

9.4.1.2. Creating Custom Udev Rules

The naming scheme can be customized by creating custom udev rules. A script has been included that generates the initial rules. Generate these rules by running:

bash /usr/lib/udev/init-net-rules.sh

Now, inspect the /etc/udev/rules.d/70-persistent-net.rules file, to find out which name was assigned to which network device:

cat /etc/udev/rules.d/70-persistent-net.rules

Note

In some cases such as when MAC addresses have been assigned to a network card manually or in a virtual environment such as Qemu or Xen, the network rules file may not have been generated because addresses are not consistently assigned. In these cases, this method cannot be used.

The file begins with a comment block followed by two lines for each NIC. The first line for each NIC is a commented description showing its hardware IDs (e.g. its PCI vendor and device IDs, if it's a PCI card), along with its driver in parentheses, if the driver can be found. Neither the hardware ID nor the driver is used to determine which name to give an interface; this information is only for reference. The second line is the udev rule that matches this NIC and actually assigns it a name.

All udev rules are made up of several keys, separated by commas and optional whitespace. This rule's keys and an explanation of each of them are as follows:

  • SUBSYSTEM=="net" - This tells udev to ignore devices that are not network cards.

  • ACTION=="add" - This tells udev to ignore this rule for a uevent that isn't an add ("remove" and "change" uevents also happen, but don't need to rename network interfaces).

  • DRIVERS=="?*" - This exists so that udev will ignore VLAN or bridge sub-interfaces (because these sub-interfaces do not have drivers). These sub-interfaces are skipped because the name that would be assigned would collide with their parent devices.

  • ATTR{address} - The value of this key is the NIC's MAC address.

  • ATTR{type}=="1" - This ensures the rule only matches the primary interface in the case of certain wireless drivers which create multiple virtual interfaces. The secondary interfaces are skipped for the same reason that VLAN and bridge sub-interfaces are skipped: there would be a name collision otherwise.

  • NAME - The value of this key is the name that udev will assign to this interface.

The value of NAME is the important part. Make sure you know which name has been assigned to each of your network cards before proceeding, and be sure to use that NAME value when creating your configuration files below.

9.4.2. CD-ROM symlinks

Some software that you may want to install later (e.g., various media players) expect the /dev/cdrom and /dev/dvd symlinks to exist, and to point to a CD-ROM or DVD-ROM device. Also, it may be convenient to put references to those symlinks into /etc/fstab. Udev comes with a script that will generate rules files to create these symlinks for you, depending on the capabilities of each device, but you need to decide which of two modes of operation you wish to have the script use.

First, the script can operate in by-path mode (used by default for USB and FireWire devices), where the rules it creates depend on the physical path to the CD or DVD device. Second, it can operate in by-id mode (default for IDE and SCSI devices), where the rules it creates depend on identification strings stored on the CD or DVD device itself. The path is determined by udev's path_id script, and the identification strings are read from the hardware by its ata_id or scsi_id programs, depending on which type of device you have.

There are advantages to each approach; the correct approach to use will depend on what kinds of device changes may happen. If you expect the physical path to the device (that is, the ports and/or slots that it plugs into) to change, for example because you plan on moving the drive to a different IDE port or a different USB connector, then you should use the by-id mode. On the other hand, if you expect the device's identification to change, for example because it may die, and you would replace it with a different device with the same capabilities and which is plugged into the same connectors, then you should use the by-path mode.

If either type of change is possible with your drive, then choose a mode based on the type of change you expect to happen more often.

Important

External devices (for example, a USB-connected CD drive) should not use by-path persistence, because each time the device is plugged into a new external port, its physical path will change. All externally-connected devices will have this problem if you write udev rules to recognize them by their physical path; the problem is not limited to CD and DVD drives.

If you wish to see the values that the udev scripts will use, then for the appropriate CD-ROM device, find the corresponding directory under /sys (e.g., this can be /sys/block/hdd) and run a command similar to the following:

udevadm test /sys/block/hdd

Look at the lines containing the output of various *_id programs. The by-id mode will use the ID_SERIAL value if it exists and is not empty, otherwise it will use a combination of ID_MODEL and ID_REVISION. The by-path mode will use the ID_PATH value.

If the default mode is not suitable for your situation, then the following modification can be made to the /etc/udev/rules.d/83-cdrom-symlinks.rules file, as follows (where mode is one of by-id or by-path):

sed -e 's/"write_cd_rules"/"write_cd_rules mode"/' \
    -i /etc/udev/rules.d/83-cdrom-symlinks.rules

Note that it is not necessary to create the rules files or symlinks at this time because you have bind-mounted the host's /dev directory into the LFS system and we assume the symlinks exist on the host. The rules and symlinks will be created the first time you boot your LFS system.

However, if you have multiple CD-ROM devices, then the symlinks generated at that time may point to different devices than they point to on your host because devices are not discovered in a predictable order. The assignments created when you first boot the LFS system will be stable, so this is only an issue if you need the symlinks on both systems to point to the same device. If you need that, then inspect (and possibly edit) the generated /etc/udev/rules.d/70-persistent-cd.rules file after booting, to make sure the assigned symlinks match what you need.

9.4.3. Dealing with duplicate devices

As explained in Section 9.3, “Overview of Device and Module Handling”, the order in which devices with the same function appear in /dev is essentially random. E.g., if you have a USB web camera and a TV tuner, sometimes /dev/video0 refers to the camera and /dev/video1 refers to the tuner, and sometimes after a reboot the order changes. For all classes of hardware except sound cards and network cards, this is fixable by creating udev rules for custom persistent symlinks. The case of network cards is covered separately in Section 9.5, “General Network Configuration”, and sound card configuration can be found in BLFS.

For each of your devices that is likely to have this problem (even if the problem doesn't exist in your current Linux distribution), find the corresponding directory under /sys/class or /sys/block. For video devices, this may be /sys/class/video4linux/videoX. Figure out the attributes that identify the device uniquely (usually, vendor and product IDs and/or serial numbers work):

udevadm info -a -p /sys/class/video4linux/video0

Then write rules that create the symlinks, e.g.:

cat > /etc/udev/rules.d/83-duplicate_devs.rules << "EOF"

# Persistent symlinks for webcam and tuner
KERNEL=="video*", ATTRS{idProduct}=="1910", ATTRS{idVendor}=="0d81", SYMLINK+="webcam"
KERNEL=="video*", ATTRS{device}=="0x036f",  ATTRS{vendor}=="0x109e", SYMLINK+="tvtuner"

EOF

The result is that /dev/video0 and /dev/video1 devices still refer randomly to the tuner and the web camera (and thus should never be used directly), but there are symlinks /dev/tvtuner and /dev/webcam that always point to the correct device.

9.5. General Network Configuration

9.5.1. Creating Network Interface Configuration Files

Which interfaces are brought up and down by the network script usually depends on the files in /etc/sysconfig/. This directory should contain a file for each interface to be configured, such as ifconfig.xyz, where xyz should describe the network card. The interface name (e.g. eth0) is usually appropriate. Inside this file are attributes to this interface, such as its IP address(es), subnet masks, and so forth. It is necessary that the stem of the filename be ifconfig.

Note

If the procedure in the previous section was not used, udev will assign network card interface names based on system physical characteristics such as enp2s1. If you are not sure what your interface name is, you can always run ip link or ls /sys/class/net after you have booted your system.

The interface names depend on the implementation and configuration of the udev daemon running on the system. The udev daemon for LFS (installed in Section 8.70, “Eudev-3.2.11”) will not run until the LFS system is booted. So it's unreliable to determine the interface names being used in LFS system by running those commands on the host distro, even though in the chroot environment.

The following command creates a sample file for the eth0 device with a static IP address:

cd /etc/sysconfig/
cat > ifconfig.eth0 << "EOF"
ONBOOT=yes
IFACE=eth0
SERVICE=ipv4-static
IP=192.168.1.2
GATEWAY=192.168.1.1
PREFIX=24
BROADCAST=192.168.1.255
EOF

The values in italics must be changed in every file to match the proper setup.

If the ONBOOT variable is set to yes the System V network script will bring up the Network Interface Card (NIC) during the system boot process. If set to anything but yes the NIC will be ignored by the network script and not be automatically brought up. The interface can be manually started or stopped with the ifup and ifdown commands.

The IFACE variable defines the interface name, for example, eth0. It is required for all network device configuration files. The filename extension must match this value.

The SERVICE variable defines the method used for obtaining the IP address. The LFS-Bootscripts package has a modular IP assignment format, and creating additional files in the /lib/services/ directory allows other IP assignment methods. This is commonly used for Dynamic Host Configuration Protocol (DHCP), which is addressed in the BLFS book.

The GATEWAY variable should contain the default gateway IP address, if one is present. If not, then comment out the variable entirely.

The PREFIX variable contains the number of bits used in the subnet. Each octet in an IP address is 8 bits. If the subnet's netmask is 255.255.255.0, then it is using the first three octets (24 bits) to specify the network number. If the netmask is 255.255.255.240, it would be using the first 28 bits. Prefixes longer than 24 bits are commonly used by DSL and cable-based Internet Service Providers (ISPs). In this example (PREFIX=24), the netmask is 255.255.255.0. Adjust the PREFIX variable according to your specific subnet. If omitted, the PREFIX defaults to 24.

For more information see the ifup man page.

9.5.2. Creating the /etc/resolv.conf File

The system will need some means of obtaining Domain Name Service (DNS) name resolution to resolve Internet domain names to IP addresses, and vice versa. This is best achieved by placing the IP address of the DNS server, available from the ISP or network administrator, into /etc/resolv.conf. Create the file by running the following:

cat > /etc/resolv.conf << "EOF"
# Begin /etc/resolv.conf

domain <Your Domain Name>
nameserver <IP address of your primary nameserver>
nameserver <IP address of your secondary nameserver>

# End /etc/resolv.conf
EOF

The domain statement can be omitted or replaced with a search statement. See the man page for resolv.conf for more details.

Replace <IP address of the nameserver> with the IP address of the DNS most appropriate for the setup. There will often be more than one entry (requirements demand secondary servers for fallback capability). If you only need or want one DNS server, remove the second nameserver line from the file. The IP address may also be a router on the local network.

Note

The Google Public IPv4 DNS addresses are 8.8.8.8 and 8.8.4.4.

9.5.3. Configuring the system hostname

During the boot process, the file /etc/hostname is used for establishing the system's hostname.

Create the /etc/hostname file and enter a hostname by running:

echo "<lfs>" > /etc/hostname

<lfs> needs to be replaced with the name given to the computer. Do not enter the Fully Qualified Domain Name (FQDN) here. That information is put in the /etc/hosts file.

9.5.4. Customizing the /etc/hosts File

Decide on the IP address, fully-qualified domain name (FQDN), and possible aliases for use in the /etc/hosts file. The syntax is:

IP_address myhost.example.org aliases

Unless the computer is to be visible to the Internet (i.e., there is a registered domain and a valid block of assigned IP addresses—most users do not have this), make sure that the IP address is in the private network IP address range. Valid ranges are:

Private Network Address Range      Normal Prefix
10.0.0.1 - 10.255.255.254           8
172.x.0.1 - 172.x.255.254           16
192.168.y.1 - 192.168.y.254         24

x can be any number in the range 16-31. y can be any number in the range 0-255.

A valid private IP address could be 192.168.1.1. A valid FQDN for this IP could be lfs.example.org.

Even if not using a network card, a valid FQDN is still required. This is necessary for certain programs to operate correctly.

Create the /etc/hosts file by running:

cat > /etc/hosts << "EOF"
# Begin /etc/hosts

127.0.0.1 localhost.localdomain localhost
127.0.1.1 <FQDN> <HOSTNAME>
<192.168.1.1> <FQDN> <HOSTNAME> [alias1] [alias2 ...]
::1       localhost ip6-localhost ip6-loopback
ff02::1   ip6-allnodes
ff02::2   ip6-allrouters

# End /etc/hosts
EOF

The <192.168.1.1>, <FQDN>, and <HOSTNAME> values need to be changed for specific uses or requirements (if assigned an IP address by a network/system administrator and the machine will be connected to an existing network). The optional alias name(s) can be omitted.

9.6. System V Bootscript Usage and Configuration

9.6.1. How Do the System V Bootscripts Work?

Linux uses a special booting facility named SysVinit that is based on a concept of run-levels. It can be quite different from one system to another, so it cannot be assumed that because things worked in one particular Linux distribution, they should work the same in LFS too. LFS has its own way of doing things, but it respects generally accepted standards.

SysVinit (which will be referred to as init from now on) works using a run-levels scheme. There are seven (numbered 0 to 6) run-levels (actually, there are more run-levels, but they are for special cases and are generally not used. See init(8) for more details), and each one of those corresponds to the actions the computer is supposed to perform when it starts up. The default run-level is 3. Here are the descriptions of the different run-levels as they are implemented in LFS:

0: halt the computer
1: single-user mode
2: reserved for customization, otherwise does the same as 3
3: multi-user mode with networking
4: reserved for customization, otherwise does the same as 3
5: same as 4, it is usually used for GUI login (like GNOME's gdm or LXDE's lxdm)
6: reboot the computer

Note

Classically, run level 2 above was defined as "multi-user mode without networking", but this was only the case many years ago when multiple users could log into a system connected via serial ports. In today's environment it makes no sense and we designate it now as "reserved".

9.6.2. Configuring Sysvinit

During the kernel initialization, the first program that is run is either specified on the command line or, by default init. This program reads the initialization file /etc/inittab. Create this file with:

cat > /etc/inittab << "EOF"
# Begin /etc/inittab

id:3:initdefault:

si::sysinit:/etc/rc.d/init.d/rc S

l0:0:wait:/etc/rc.d/init.d/rc 0
l1:S1:wait:/etc/rc.d/init.d/rc 1
l2:2:wait:/etc/rc.d/init.d/rc 2
l3:3:wait:/etc/rc.d/init.d/rc 3
l4:4:wait:/etc/rc.d/init.d/rc 4
l5:5:wait:/etc/rc.d/init.d/rc 5
l6:6:wait:/etc/rc.d/init.d/rc 6

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

su:S06:once:/sbin/sulogin
s1:1:respawn:/sbin/sulogin

1:2345:respawn:/sbin/agetty --noclear tty1 9600
2:2345:respawn:/sbin/agetty tty2 9600
3:2345:respawn:/sbin/agetty tty3 9600
4:2345:respawn:/sbin/agetty tty4 9600
5:2345:respawn:/sbin/agetty tty5 9600
6:2345:respawn:/sbin/agetty tty6 9600

# End /etc/inittab
EOF

An explanation of this initialization file is in the man page for inittab. For LFS, the key command that is run is rc. The initialization file above will instruct rc to run all the scripts starting with an S in the /etc/rc.d/rcS.d directory followed by all the scripts starting with an S in the /etc/rc.d/rc?.d directory where the question mark is specified by the initdefault value.

As a convenience, the rc script reads a library of functions in /lib/lsb/init-functions. This library also reads an optional configuration file, /etc/sysconfig/rc.site. Any of the system configuration file parameters described in subsequent sections can be alternatively placed in this file allowing consolidation of all system parameters in this one file.

As a debugging convenience, the functions script also logs all output to /run/var/bootlog. Since the /run directory is a tmpfs, this file is not persistent across boots, however it is appended to the more permanent file /var/log/boot.log at the end of the boot process.

9.6.2.1. Changing Run Levels

Changing run-levels is done with init <runlevel>, where <runlevel> is the target run-level. For example, to reboot the computer, a user could issue the init 6 command, which is an alias for the reboot command. Likewise, init 0 is an alias for the halt command.

There are a number of directories under /etc/rc.d that look like rc?.d (where ? is the number of the run-level) and rcS.d, all containing a number of symbolic links. Some begin with a K, the others begin with an S, and all of them have two numbers following the initial letter. The K means to stop (kill) a service and the S means to start a service. The numbers determine the order in which the scripts are run, from 00 to 99—the lower the number the earlier it gets executed. When init switches to another run-level, the appropriate services are either started or stopped, depending on the runlevel chosen.

The real scripts are in /etc/rc.d/init.d. They do the actual work, and the symlinks all point to them. K links and S links point to the same script in /etc/rc.d/init.d. This is because the scripts can be called with different parameters like start, stop, restart, reload, and status. When a K link is encountered, the appropriate script is run with the stop argument. When an S link is encountered, the appropriate script is run with the start argument.

These are descriptions of what the arguments make the scripts do:

start

The service is started.

stop

The service is stopped.

restart

The service is stopped and then started again.

reload

The configuration of the service is updated. This is used after the configuration file of a service was modified, when the service does not need to be restarted.

status

Tells if the service is running and with which PIDs.

Feel free to modify the way the boot process works (after all, it is your own LFS system). The files given here are an example of how it can be done.

9.6.3. Udev Bootscripts

The /etc/rc.d/init.d/udev initscript starts udevd, triggers any "coldplug" devices that have already been created by the kernel and waits for any rules to complete. The script also unsets the uevent handler from the default of /sbin/hotplug . This is done because the kernel no longer needs to call out to an external binary. Instead udevd will listen on a netlink socket for uevents that the kernel raises.

The /etc/rc.d/init.d/udev_retry initscript takes care of re-triggering events for subsystems whose rules may rely on filesystems that are not mounted until the mountfs script is run (in particular, /usr and /var may cause this). This script runs after the mountfs script, so those rules (if re-triggered) should succeed the second time around. It is configured from the /etc/sysconfig/udev_retry file; any words in this file other than comments are considered subsystem names to trigger at retry time. To find the subsystem of a device, use udevadm info --attribute-walk <device> where <device> is an absolute path in /dev or /sys such as /dev/sr0 or /sys/class/rtc.

For information on kernel module loading and udev, see Section 9.3.2.3, “Module Loading”.

9.6.4. Configuring the System Clock

The setclock script reads the time from the hardware clock, also known as the BIOS or the Complementary Metal Oxide Semiconductor (CMOS) clock. If the hardware clock is set to UTC, this script will convert the hardware clock's time to the local time using the /etc/localtime file (which tells the hwclock program which timezone to use). There is no way to detect whether or not the hardware clock is set to UTC, so this needs to be configured manually.

The setclock program is run via udev when the kernel detects the hardware capability upon boot. It can also be run manually with the stop parameter to store the system time to the CMOS clock.

If you cannot remember whether or not the hardware clock is set to UTC, find out by running the hwclock --localtime --show command. This will display what the current time is according to the hardware clock. If this time matches whatever your watch says, then the hardware clock is set to local time. If the output from hwclock is not local time, chances are it is set to UTC time. Verify this by adding or subtracting the proper amount of hours for the timezone to the time shown by hwclock. For example, if you are currently in the MST timezone, which is also known as GMT -0700, add seven hours to the local time.

Change the value of the UTC variable below to a value of 0 (zero) if the hardware clock is NOT set to UTC time.

Create a new file /etc/sysconfig/clock by running the following:

cat > /etc/sysconfig/clock << "EOF"
# Begin /etc/sysconfig/clock

UTC=1

# Set this to any options you might need to give to hwclock,
# such as machine hardware clock type for Alphas.
CLOCKPARAMS=

# End /etc/sysconfig/clock
EOF

A good hint explaining how to deal with time on LFS is available at https://www.linuxfromscratch.org/hints/downloads/files/time.txt. It explains issues such as time zones, UTC, and the TZ environment variable.

Note

The CLOCKPARAMS and UTC parameters may also be set in the /etc/sysconfig/rc.site file.

9.6.5. Configuring the Linux Console

This section discusses how to configure the console bootscript that sets up the keyboard map, console font, and console kernel log level. If non-ASCII characters (e.g., the copyright sign, the British pound sign and Euro symbol) will not be used and the keyboard is a U.S. one, much of this section can be skipped. Without the configuration file, (or equivalent settings in rc.site), the console bootscript will do nothing.

The console script reads the /etc/sysconfig/console file for configuration information. Decide which keymap and screen font will be used. Various language-specific HOWTOs can also help with this, see http://www.tldp.org/HOWTO/HOWTO-INDEX/other-lang.html. If still in doubt, look in the /usr/share/keymaps and /usr/share/consolefonts directories for valid keymaps and screen fonts. Read loadkeys(1) and setfont(8) manual pages to determine the correct arguments for these programs.

The /etc/sysconfig/console file should contain lines of the form: VARIABLE="value". The following variables are recognized:

LOGLEVEL

This variable specifies the log level for kernel messages sent to the console as set by dmesg -n. Valid levels are from "1" (no messages) to "8". The default level is "7".

KEYMAP

This variable specifies the arguments for the loadkeys program, typically, the name of keymap to load, e.g., it. If this variable is not set, the bootscript will not run the loadkeys program, and the default kernel keymap will be used. Note that a few keymaps have multiple versions with the same name (cz and its variants in qwerty/ and qwertz/, es in olpc/ and qwerty/, and trf in fgGIod/ and qwerty/). In these cases the parent directory should also be specified (e.g. qwerty/es) to ensure the proper keymap is loaded.

KEYMAP_CORRECTIONS

This (rarely used) variable specifies the arguments for the second call to the loadkeys program. This is useful if the stock keymap is not completely satisfactory and a small adjustment has to be made. E.g., to include the Euro sign into a keymap that normally doesn't have it, set this variable to euro2.

FONT

This variable specifies the arguments for the setfont program. Typically, this includes the font name, -m, and the name of the application character map to load. E.g., in order to load the lat1-16 font together with the 8859-1 application character map (as it is appropriate in the USA), set this variable to lat1-16 -m 8859-1. In UTF-8 mode, the kernel uses the application character map for conversion of composed 8-bit key codes in the keymap to UTF-8, and thus the argument of the "-m" parameter should be set to the encoding of the composed key codes in the keymap.

UNICODE

Set this variable to 1, yes or true in order to put the console into UTF-8 mode. This is useful in UTF-8 based locales and harmful otherwise.

LEGACY_CHARSET

For many keyboard layouts, there is no stock Unicode keymap in the Kbd package. The console bootscript will convert an available keymap to UTF-8 on the fly if this variable is set to the encoding of the available non-UTF-8 keymap.

Some examples:

  • For a non-Unicode setup, only the KEYMAP and FONT variables are generally needed. E.g., for a Polish setup, one would use:

    cat > /etc/sysconfig/console << "EOF"
    # Begin /etc/sysconfig/console
    
    KEYMAP="pl2"
    FONT="lat2a-16 -m 8859-2"
    
    # End /etc/sysconfig/console
    EOF
  • As mentioned above, it is sometimes necessary to adjust a stock keymap slightly. The following example adds the Euro symbol to the German keymap:

    cat > /etc/sysconfig/console << "EOF"
    # Begin /etc/sysconfig/console
    
    KEYMAP="de-latin1"
    KEYMAP_CORRECTIONS="euro2"
    FONT="lat0-16 -m 8859-15"
    UNICODE="1"
    
    # End /etc/sysconfig/console
    EOF
  • The following is a Unicode-enabled example for Bulgarian, where a stock UTF-8 keymap exists:

    cat > /etc/sysconfig/console << "EOF"
    # Begin /etc/sysconfig/console
    
    UNICODE="1"
    KEYMAP="bg_bds-utf8"
    FONT="LatArCyrHeb-16"
    
    # End /etc/sysconfig/console
    EOF
  • Due to the use of a 512-glyph LatArCyrHeb-16 font in the previous example, bright colors are no longer available on the Linux console unless a framebuffer is used. If one wants to have bright colors without a framebuffer and can live without characters not belonging to his language, it is still possible to use a language-specific 256-glyph font, as illustrated below:

    cat > /etc/sysconfig/console << "EOF"
    # Begin /etc/sysconfig/console
    
    UNICODE="1"
    KEYMAP="bg_bds-utf8"
    FONT="cyr-sun16"
    
    # End /etc/sysconfig/console
    EOF
  • The following example illustrates keymap autoconversion from ISO-8859-15 to UTF-8 and enabling dead keys in Unicode mode:

    cat > /etc/sysconfig/console << "EOF"
    # Begin /etc/sysconfig/console
    
    UNICODE="1"
    KEYMAP="de-latin1"
    KEYMAP_CORRECTIONS="euro2"
    LEGACY_CHARSET="iso-8859-15"
    FONT="LatArCyrHeb-16 -m 8859-15"
    
    # End /etc/sysconfig/console
    EOF
  • Some keymaps have dead keys (i.e., keys that don't produce a character by themselves, but put an accent on the character produced by the next key) or define composition rules (such as: press Ctrl+. A E to get Æ in the default keymap). Linux-5.19.2 interprets dead keys and composition rules in the keymap correctly only when the source characters to be composed together are not multibyte. This deficiency doesn't affect keymaps for European languages, because there accents are added to unaccented ASCII characters, or two ASCII characters are composed together. However, in UTF-8 mode it is a problem; e.g., for the Greek language, where one sometimes needs to put an accent on the letter alpha. The solution is either to avoid the use of UTF-8, or to install the X window system that doesn't have this limitation in its input handling.

  • For Chinese, Japanese, Korean, and some other languages, the Linux console cannot be configured to display the needed characters. Users who need such languages should install the X Window System, fonts that cover the necessary character ranges, and the proper input method (e.g., SCIM, supports a wide variety of languages).

Note

The /etc/sysconfig/console file only controls the Linux text console localization. It has nothing to do with setting the proper keyboard layout and terminal fonts in the X Window System, with ssh sessions, or with a serial console. In such situations, limitations mentioned in the last two list items above do not apply.

9.6.6. Creating Files at Boot

At times, it is desirable to create files at boot time. For instance, the /tmp/.ICE-unix directory is often needed. This can be done by creating an entry in the /etc/sysconfig/createfiles configuration script. The format of this file is embedded in the comments of the default configuration file.

9.6.7. Configuring the sysklogd Script

The sysklogd script invokes the syslogd program as a part of System V initialization. The -m 0 option turns off the periodic timestamp mark that syslogd writes to the log files every 20 minutes by default. If you want to turn on this periodic timestamp mark, edit /etc/sysconfig/rc.site and define the variable SYSKLOGD_PARMS to the desired value. For instance, to remove all parameters, set the variable to a null value:

SYSKLOGD_PARMS=

See man syslogd for more options.

9.6.8. The rc.site File

The optional /etc/sysconfig/rc.site file contains settings that are automatically set for each SystemV boot script. It can alternatively set the values specified in the hostname, console, and clock files in the /etc/sysconfig/ directory. If the associated variables are present in both these separate files and rc.site, the values in the script specific files have precedence.

rc.site also contains parameters that can customize other aspects of the boot process. Setting the IPROMPT variable will enable selective running of bootscripts. Other options are described in the file comments. The default version of the file is as follows:

# rc.site
# Optional parameters for boot scripts.

# Distro Information
# These values, if specified here, override the defaults
#DISTRO="Linux From Scratch" # The distro name
#DISTRO_CONTACT="[email protected]" # Bug report address
#DISTRO_MINI="LFS" # Short name used in filenames for distro config

# Define custom colors used in messages printed to the screen

# Please consult `man console_codes` for more information
# under the "ECMA-48 Set Graphics Rendition" section
#
# Warning: when switching from a 8bit to a 9bit font,
# the linux console will reinterpret the bold (1;) to
# the top 256 glyphs of the 9bit font.  This does
# not affect framebuffer consoles

# These values, if specified here, override the defaults
#BRACKET="\\033[1;34m" # Blue
#FAILURE="\\033[1;31m" # Red
#INFO="\\033[1;36m"    # Cyan
#NORMAL="\\033[0;39m"  # Grey
#SUCCESS="\\033[1;32m" # Green
#WARNING="\\033[1;33m" # Yellow

# Use a colored prefix
# These values, if specified here, override the defaults
#BMPREFIX="      "
#SUCCESS_PREFIX="${SUCCESS}  *  ${NORMAL} "
#FAILURE_PREFIX="${FAILURE}*****${NORMAL} "
#WARNING_PREFIX="${WARNING} *** ${NORMAL} "

# Manually seet the right edge of message output (characters)
# Useful when resetting console font during boot to override
# automatic screen width detection
#COLUMNS=120

# Interactive startup
#IPROMPT="yes" # Whether to display the interactive boot prompt
#itime="3"    # The amount of time (in seconds) to display the prompt

# The total length of the distro welcome string, without escape codes
#wlen=$(echo "Welcome to ${DISTRO}" | wc -c )
#welcome_message="Welcome to ${INFO}${DISTRO}${NORMAL}"

# The total length of the interactive string, without escape codes
#ilen=$(echo "Press 'I' to enter interactive startup" | wc -c )
#i_message="Press '${FAILURE}I${NORMAL}' to enter interactive startup"

# Set scripts to skip the file system check on reboot
#FASTBOOT=yes

# Skip reading from the console
#HEADLESS=yes

# Write out fsck progress if yes
#VERBOSE_FSCK=no

# Speed up boot without waiting for settle in udev
#OMIT_UDEV_SETTLE=y

# Speed up boot without waiting for settle in udev_retry
#OMIT_UDEV_RETRY_SETTLE=yes

# Skip cleaning /tmp if yes
#SKIPTMPCLEAN=no

# For setclock
#UTC=1
#CLOCKPARAMS=

# For consolelog (Note that the default, 7=debug, is noisy)
#LOGLEVEL=7

# For network
#HOSTNAME=mylfs

# Delay between TERM and KILL signals at shutdown
#KILLDELAY=3

# Optional sysklogd parameters
#SYSKLOGD_PARMS="-m 0"

# Console parameters
#UNICODE=1
#KEYMAP="de-latin1"
#KEYMAP_CORRECTIONS="euro2"
#FONT="lat0-16 -m 8859-15"
#LEGACY_CHARSET=

9.6.8.1. Customizing the Boot and Shutdown Scripts

The LFS boot scripts boot and shut down a system in a fairly efficient manner, but there are a few tweaks that you can make in the rc.site file to improve speed even more and to adjust messages according to your preferences. To do this, adjust the settings in the /etc/sysconfig/rc.site file above.

  • During the boot script udev, there is a call to udev settle that requires some time to complete. This time may or may not be required depending on devices present in the system. If you only have simple partitions and a single ethernet card, the boot process will probably not need to wait for this command. To skip it, set the variable OMIT_UDEV_SETTLE=y.

  • The boot script udev_retry also runs udev settle by default. This command is only needed by default if the /var directory is separately mounted. This is because the clock needs the file /var/lib/hwclock/adjtime. Other customizations may also need to wait for udev to complete, but in many installations it is not needed. Skip the command by setting the variable OMIT_UDEV_RETRY_SETTLE=y.

  • By default, the file system checks are silent. This can appear to be a delay during the bootup process. To turn on the fsck output, set the variable VERBOSE_FSCK=y.

  • When rebooting, you may want to skip the filesystem check, fsck, completely. To do this, either create the file /fastboot or reboot the system with the command /sbin/shutdown -f -r now. On the other hand, you can force all file systems to be checked by creating /forcefsck or running shutdown with the -F parameter instead of -f.

    Setting the variable FASTBOOT=y will disable fsck during the boot process until it is removed. This is not recommended on a permanent basis.

  • Normally, all files in the /tmp directory are deleted at boot time. Depending on the number of files or directories present, this can cause a noticeable delay in the boot process. To skip removing these files set the variable SKIPTMPCLEAN=y.

  • During shutdown, the init program sends a TERM signal to each program it has started (e.g. agetty), waits for a set time (default 3 seconds), and sends each process a KILL signal and waits again. This process is repeated in the sendsignals script for any processes that are not shut down by their own scripts. The delay for init can be set by passing a parameter. For example to remove the delay in init, pass the -t0 parameter when shutting down or rebooting (e.g. /sbin/shutdown -t0 -r now). The delay for the sendsignals script can be skipped by setting the parameter KILLDELAY=0.

9.7. The Bash Shell Startup Files

The shell program /bin/bash (hereafter referred to as the shell) uses a collection of startup files to help create an environment to run in. Each file has a specific use and may affect login and interactive environments differently. The files in the /etc directory provide global settings. If an equivalent file exists in the home directory, it may override the global settings.

An interactive login shell is started after a successful login, using /bin/login, by reading the /etc/passwd file. An interactive non-login shell is started at the command-line (e.g., [prompt]$/bin/bash). A non-interactive shell is usually present when a shell script is running. It is non-interactive because it is processing a script and not waiting for user input between commands.

For more information, see info bash under the Bash Startup Files and Interactive Shells section.

The files /etc/profile and ~/.bash_profile are read when the shell is invoked as an interactive login shell.

The base /etc/profile below sets some environment variables necessary for native language support. Setting them properly results in:

  • The output of programs translated into the native language

  • Correct classification of characters into letters, digits and other classes. This is necessary for bash to properly accept non-ASCII characters in command lines in non-English locales

  • The correct alphabetical sorting order for the country

  • Appropriate default paper size

  • Correct formatting of monetary, time, and date values

Replace <ll> below with the two-letter code for the desired language (e.g., en) and <CC> with the two-letter code for the appropriate country (e.g., GB). <charmap> should be replaced with the canonical charmap for your chosen locale. Optional modifiers such as @euro may also be present.

The list of all locales supported by Glibc can be obtained by running the following command:

locale -a

Charmaps can have a number of aliases, e.g., ISO-8859-1 is also referred to as iso8859-1 and iso88591. Some applications cannot handle the various synonyms correctly (e.g., require that UTF-8 is written as UTF-8, not utf8), so it is safest in most cases to choose the canonical name for a particular locale. To determine the canonical name, run the following command, where <locale name> is the output given by locale -a for your preferred locale (en_GB.iso88591 in our example).

LC_ALL=<locale name> locale charmap

For the en_GB.iso88591 locale, the above command will print:

ISO-8859-1

This results in a final locale setting of en_GB.ISO-8859-1. It is important that the locale found using the heuristic above is tested prior to it being added to the Bash startup files:

LC_ALL=<locale name> locale language
LC_ALL=<locale name> locale charmap
LC_ALL=<locale name> locale int_curr_symbol
LC_ALL=<locale name> locale int_prefix

The above commands should print the language name, the character encoding used by the locale, the local currency, and the prefix to dial before the telephone number in order to get into the country. If any of the commands above fail with a message similar to the one shown below, this means that your locale was either not installed in Section 8.5, “Glibc-2.36” or is not supported by the default installation of Glibc.

locale: Cannot set LC_* to default locale: No such file or directory

If this happens, you should either install the desired locale using the localedef command, or consider choosing a different locale. Further instructions assume that there are no such error messages from Glibc.

Other packages can also function incorrectly (but may not necessarily display any error messages) if the locale name does not meet their expectations. In those cases, investigating how other Linux distributions support your locale might provide some useful information.

Once the proper locale settings have been determined, create the /etc/profile file:

cat > /etc/profile << "EOF"
# Begin /etc/profile

export LANG=<ll>_<CC>.<charmap><@modifiers>

# End /etc/profile
EOF

The C (default) and en_US.utf8 (the recommended one for United States English users) locales are different. C uses the US-ASCII 7-bit character set, and treats bytes with the high bit set as invalid characters. That's why, e.g., the ls command substitutes them with question marks in that locale. Also, an attempt to send mail with such characters from Mutt or Pine results in non-RFC-conforming messages being sent (the charset in the outgoing mail is indicated as unknown 8-bit). So you can use the C locale only if you are sure that you will never need 8-bit characters.

UTF-8 based locales are not supported well by some programs. Work is in progress to document and, if possible, fix such problems, see https://www.linuxfromscratch.org/blfs/view/11.2/introduction/locale-issues.html.

9.8. Creating the /etc/inputrc File

The inputrc file is the configuration file for the readline library, which provides editing capabilities while the user is entering a line from the terminal. It works by translating keyboard inputs into specific actions. Readline is used by bash and most other shells as well as many other applications.

Most people do not need user-specific functionality so the command below creates a global /etc/inputrc used by everyone who logs in. If you later decide you need to override the defaults on a per user basis, you can create a .inputrc file in the user's home directory with the modified mappings.

For more information on how to edit the inputrc file, see info bash under the Readline Init File section. info readline is also a good source of information.

Below is a generic global inputrc along with comments to explain what the various options do. Note that comments cannot be on the same line as commands. Create the file using the following command:

cat > /etc/inputrc << "EOF"
# Begin /etc/inputrc
# Modified by Chris Lynn <[email protected]>

# Allow the command prompt to wrap to the next line
set horizontal-scroll-mode Off

# Enable 8-bit input
set meta-flag On
set input-meta On

# Turns off 8th bit stripping
set convert-meta Off

# Keep the 8th bit for display
set output-meta On

# none, visible or audible
set bell-style none

# All of the following map the escape sequence of the value
# contained in the 1st argument to the readline specific functions
"\eOd": backward-word
"\eOc": forward-word

# for linux console
"\e[1~": beginning-of-line
"\e[4~": end-of-line
"\e[5~": beginning-of-history
"\e[6~": end-of-history
"\e[3~": delete-char
"\e[2~": quoted-insert

# for xterm
"\eOH": beginning-of-line
"\eOF": end-of-line

# for Konsole
"\e[H": beginning-of-line
"\e[F": end-of-line

# End /etc/inputrc
EOF

9.9. Creating the /etc/shells File

The shells file contains a list of login shells on the system. Applications use this file to determine whether a shell is valid. For each shell a single line should be present, consisting of the shell's path relative to the root of the directory structure (/).

For example, this file is consulted by chsh to determine whether an unprivileged user may change the login shell for her own account. If the command name is not listed, the user will be denied the ability to change shells.

It is a requirement for applications such as GDM which does not populate the face browser if it can't find /etc/shells, or FTP daemons which traditionally disallow access to users with shells not included in this file.

cat > /etc/shells << "EOF"
# Begin /etc/shells

/bin/sh
/bin/bash

# End /etc/shells
EOF

Chapter 10. Making the LFS System Bootable

10.1. Introduction

It is time to make the LFS system bootable. This chapter discusses creating the /etc/fstab file, building a kernel for the new LFS system, and installing the GRUB boot loader so that the LFS system can be selected for booting at startup.

10.2. Creating the /etc/fstab File

The /etc/fstab file is used by some programs to determine where file systems are to be mounted by default, in which order, and which must be checked (for integrity errors) prior to mounting. Create a new file systems table like this:

cat > /etc/fstab << "EOF"
# Begin /etc/fstab

# file system  mount-point  type     options             dump  fsck
#                                                              order

/dev/<xxx>     /            <fff>    defaults            1     1
/dev/<yyy>     swap         swap     pri=1               0     0
proc           /proc        proc     nosuid,noexec,nodev 0     0
sysfs          /sys         sysfs    nosuid,noexec,nodev 0     0
devpts         /dev/pts     devpts   gid=5,mode=620      0     0
tmpfs          /run         tmpfs    defaults            0     0
devtmpfs       /dev         devtmpfs mode=0755,nosuid    0     0

# End /etc/fstab
EOF

Replace <xxx>, <yyy>, and <fff> with the values appropriate for the system, for example, sda2, sda5, and ext4. For details on the six fields in this file, see man 5 fstab.

Filesystems with MS-DOS or Windows origin (i.e. vfat, ntfs, smbfs, cifs, iso9660, udf) need a special option, utf8, in order for non-ASCII characters in file names to be interpreted properly. For non-UTF-8 locales, the value of iocharset should be set to be the same as the character set of the locale, adjusted in such a way that the kernel understands it. This works if the relevant character set definition (found under File systems -> Native Language Support when configuring the kernel) has been compiled into the kernel or built as a module. However, if the character set of the locale is UTF-8, the corresponding option iocharset=utf8 would make the file system case sensitive. To fix this, use the special option utf8 instead of iocharset=utf8, for UTF-8 locales. The codepage option is also needed for vfat and smbfs filesystems. It should be set to the codepage number used under MS-DOS in your country. For example, in order to mount USB flash drives, a ru_RU.KOI8-R user would need the following in the options portion of its mount line in /etc/fstab:

noauto,user,quiet,showexec,codepage=866,iocharset=koi8r

The corresponding options fragment for ru_RU.UTF-8 users is:

noauto,user,quiet,showexec,codepage=866,utf8

Note that using iocharset is the default for iso8859-1 (which keeps the file system case insensitive), and the utf8 option tells the kernel to convert the file names using UTF-8 so they can be interpreted in the UTF-8 locale.

It is also possible to specify default codepage and iocharset values for some filesystems during kernel configuration. The relevant parameters are named Default NLS Option (CONFIG_NLS_DEFAULT), Default Remote NLS Option (CONFIG_SMB_NLS_DEFAULT), Default codepage for FAT (CONFIG_FAT_DEFAULT_CODEPAGE), and Default iocharset for FAT (CONFIG_FAT_DEFAULT_IOCHARSET). There is no way to specify these settings for the ntfs filesystem at kernel compilation time.

It is possible to make the ext3 filesystem reliable across power failures for some hard disk types. To do this, add the barrier=1 mount option to the appropriate entry in /etc/fstab. To check if the disk drive supports this option, run hdparm on the applicable disk drive. For example, if:

hdparm -I /dev/sda | grep NCQ

returns non-empty output, the option is supported.

Note: Logical Volume Management (LVM) based partitions cannot use the barrier option.

10.3. Linux-5.19.2

The Linux package contains the Linux kernel.

Approximate build time: 1.5 - 130.0 SBU (typically about 12 SBU)
Required disk space: 1200 - 8800 MB (typically about 1700 MB)

10.3.1. Installation of the kernel

Building the kernel involves a few steps—configuration, compilation, and installation. Read the README file in the kernel source tree for alternative methods to the way this book configures the kernel.

Prepare for compilation by running the following command:

make mrproper

This ensures that the kernel tree is absolutely clean. The kernel team recommends that this command be issued prior to each kernel compilation. Do not rely on the source tree being clean after un-tarring.

There are several ways to configure the kernel options. Usually, This is done through a menu-driven interface, for example:

make menuconfig

The meaning of optional make environment variables:

LANG=<host_LANG_value> LC_ALL=

This establishes the locale setting to the one used on the host. This may be needed for a proper menuconfig ncurses interface line drawing on a UTF-8 linux text console.

If used, be sure to replace <host_LANG_value> by the value of the $LANG variable from your host. You can alternatively use instead the host's value of $LC_ALL or $LC_CTYPE.

make menuconfig

This launches an ncurses menu-driven interface. For other (graphical) interfaces, type make help.

For general information on kernel configuration see https://www.linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt. BLFS has some information regarding particular kernel configuration requirements of packages outside of LFS at https://www.linuxfromscratch.org/blfs/view/11.2/longindex.html#kernel-config-index. Additional information about configuring and building the kernel can be found at http://www.kroah.com/lkn/

Note

A good starting place for setting up the kernel configuration is to run make defconfig. This will set the base configuration to a good state that takes your current system architecture into account.

Be sure to enable/disable/set the following features or the system might not work correctly or boot at all:

General setup -->
   [ ] Compile the kernel with warnings as errors [CONFIG_WERROR]
   < > Enable kernel headers through /sys/kernel/kheaders.tar.xz [CONFIG_IKHEADERS]
Device Drivers  --->
  Graphics support --->
   Frame buffer Devices --->
      [*] Support for frame buffer devices ----
  Generic Driver Options  --->
   [ ] Support for uevent helper [CONFIG_UEVENT_HELPER]
   [*] Maintain a devtmpfs filesystem to mount at /dev [CONFIG_DEVTMPFS]
   [*]   Automount devtmpfs at /dev, after the kernel mounted the rootfs [CONFIG_DEVTMPFS_MOUNT]

Enable some additional features if you are building a 64-bit system. If you are using menuconfig, enable them in the order of CONFIG_PCI_MSI first, then CONFIG_IRQ_REMAP, at last CONFIG_X86_X2APIC because an option only shows up after its dependencies are selected.

Processor type and features --->
  [*] Support x2apic [CONFIG_X86_X2APIC]
Memory Management options  --->
  [ ] Enable userfaultfd() system call [CONFIG_USERFAULTFD]
Device Drivers --->
  [*] PCI Support ---> [CONFIG_PCI]
    [*] Message Signaled Interrupts (MSI and MSI-X) [CONFIG_PCI_MSI]
  [*] IOMMU Hardware Support ---> [CONFIG_IOMMU_SUPPORT]
    [*] Support for Interrupt Remapping [CONFIG_IRQ_REMAP]

There are several other options that may be desired depending on the requirements for the system. For a list of options needed for BLFS packages, see the BLFS Index of Kernel Settings (https://www.linuxfromscratch.org/blfs/view/11.2/longindex.html#kernel-config-index).

Note

If your host hardware is using UEFI and you wish to boot the LFS system with it, you should adjust some kernel configuration following the BLFS page.

The rationale for the above configuration items:

Compile the kernel with warnings as errors

This may cause building failure if the compiler and/or configuration are different from those of the kernel developers.

Enable kernel headers through /sys/kernel/kheaders.tar.xz

This will require cpio building the kernel. cpio is not installed by LFS.

Support for uevent helper

Having this option set may interfere with device management when using Udev/Eudev.

Maintain a devtmpfs

This will create automated device nodes which are populated by the kernel, even without Udev running. Udev then runs on top of this, managing permissions and adding symlinks. This configuration item is required for all users of Udev/Eudev.

Automount devtmpfs at /dev

This will mount the kernel view of the devices on /dev upon switching to root filesystem just before starting init.

Support x2apic

Support running the interrupt controller of 64-bit x86 processors in x2APIC mode. x2APIC may be enabled by firmware on 64-bit x86 systems, and a kernel without this option enabled will panic on boot if x2APIC is enabled by firmware. This option has has no effect, but also does no harm if x2APIC is disabled by the firmware.

Enable userfaultfd() system call

If this option is enabled, a security vulnerability not resolved in Linux-5.19.2 yet will be exploitable. Disable this option to avoid the vulnerability. This system call is not used by any part of LFS or BLFS.

Alternatively, make oldconfig may be more appropriate in some situations. See the README file for more information.

If desired, skip kernel configuration by copying the kernel config file, .config, from the host system (assuming it is available) to the unpacked linux-5.19.2 directory. However, we do not recommend this option. It is often better to explore all the configuration menus and create the kernel configuration from scratch.

Compile the kernel image and modules:

make

If using kernel modules, module configuration in /etc/modprobe.d may be required. Information pertaining to modules and kernel configuration is located in Section 9.3, “Overview of Device and Module Handling” and in the kernel documentation in the linux-5.19.2/Documentation directory. Also, modprobe.d(5) may be of interest.

Unless module support has been disabled in the kernel configuration, install the modules with:

make modules_install

After kernel compilation is complete, additional steps are required to complete the installation. Some files need to be copied to the /boot directory.

Caution

If the host system has a separate /boot partition, the files copied below should go there. The easiest way to do that is to bind /boot on the host (outside chroot) to /mnt/lfs/boot before proceeding. As the root user in the host system:

mount --bind /boot /mnt/lfs/boot

The path to the kernel image may vary depending on the platform being used. The filename below can be changed to suit your taste, but the stem of the filename should be vmlinuz to be compatible with the automatic setup of the boot process described in the next section. The following command assumes an x86 architecture:

cp -iv arch/x86/boot/bzImage /boot/vmlinuz-5.19.2-lfs-11.2

System.map is a symbol file for the kernel. It maps the function entry points of every function in the kernel API, as well as the addresses of the kernel data structures for the running kernel. It is used as a resource when investigating kernel problems. Issue the following command to install the map file:

cp -iv System.map /boot/System.map-5.19.2

The kernel configuration file .config produced by the make menuconfig step above contains all the configuration selections for the kernel that was just compiled. It is a good idea to keep this file for future reference:

cp -iv .config /boot/config-5.19.2

Install the documentation for the Linux kernel:

install -d /usr/share/doc/linux-5.19.2
cp -r Documentation/* /usr/share/doc/linux-5.19.2

It is important to note that the files in the kernel source directory are not owned by root. Whenever a package is unpacked as user root (like we did inside chroot), the files have the user and group IDs of whatever they were on the packager's computer. This is usually not a problem for any other package to be installed because the source tree is removed after the installation. However, the Linux source tree is often retained for a long time. Because of this, there is a chance that whatever user ID the packager used will be assigned to somebody on the machine. That person would then have write access to the kernel source.

Note

In many cases, the configuration of the kernel will need to be updated for packages that will be installed later in BLFS. Unlike other packages, it is not necessary to remove the kernel source tree after the newly built kernel is installed.

If the kernel source tree is going to be retained, run chown -R 0:0 on the linux-5.19.2 directory to ensure all files are owned by user root.

Warning

Some kernel documentation recommends creating a symlink from /usr/src/linux pointing to the kernel source directory. This is specific to kernels prior to the 2.6 series and must not be created on an LFS system as it can cause problems for packages you may wish to build once your base LFS system is complete.

Warning

The headers in the system's include directory (/usr/include) should always be the ones against which Glibc was compiled, that is, the sanitised headers installed in Section 5.4, “Linux-5.19.2 API Headers”. Therefore, they should never be replaced by either the raw kernel headers or any other kernel sanitized headers.

10.3.2. Configuring Linux Module Load Order

Most of the time Linux modules are loaded automatically, but sometimes it needs some specific direction. The program that loads modules, modprobe or insmod, uses /etc/modprobe.d/usb.conf for this purpose. This file needs to be created so that if the USB drivers (ehci_hcd, ohci_hcd and uhci_hcd) have been built as modules, they will be loaded in the correct order; ehci_hcd needs to be loaded prior to ohci_hcd and uhci_hcd in order to avoid a warning being output at boot time.

Create a new file /etc/modprobe.d/usb.conf by running the following:

install -v -m755 -d /etc/modprobe.d
cat > /etc/modprobe.d/usb.conf << "EOF"
# Begin /etc/modprobe.d/usb.conf

install ohci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i ohci_hcd ; true
install uhci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i uhci_hcd ; true

# End /etc/modprobe.d/usb.conf
EOF

10.3.3. Contents of Linux

Installed files: config-5.19.2, vmlinuz-5.19.2-lfs-11.2, and System.map-5.19.2
Installed directories: /lib/modules, /usr/share/doc/linux-5.19.2

Short Descriptions

config-5.19.2

Contains all the configuration selections for the kernel

vmlinuz-5.19.2-lfs-11.2

The engine of the Linux system. When turning on the computer, the kernel is the first part of the operating system that gets loaded. It detects and initializes all components of the computer's hardware, then makes these components available as a tree of files to the software and turns a single CPU into a multitasking machine capable of running scores of programs seemingly at the same time

System.map-5.19.2

A list of addresses and symbols; it maps the entry points and addresses of all the functions and data structures in the kernel

10.4. Using GRUB to Set Up the Boot Process

Note

If your system has UEFI support and you wish to boot LFS with UEFI, you should skip this page, and config GRUB with UEFI support using the instructions provided in the BLFS page.

10.4.1. Introduction

Warning

Configuring GRUB incorrectly can render your system inoperable without an alternate boot device such as a CD-ROM or bootable USB drive. This section is not required to boot your LFS system. You may just want to modify your current boot loader, e.g. Grub-Legacy, GRUB2, or LILO.

Ensure that an emergency boot disk is ready to rescue the computer if the computer becomes unusable (un-bootable). If you do not already have a boot device, you can create one. In order for the procedure below to work, you need to jump ahead to BLFS and install xorriso from the libisoburn package.

cd /tmp
grub-mkrescue --output=grub-img.iso
xorriso -as cdrecord -v dev=/dev/cdrw blank=as_needed grub-img.iso

10.4.2. GRUB Naming Conventions

GRUB uses its own naming structure for drives and partitions in the form of (hdn,m), where n is the hard drive number and m is the partition number. The hard drive number starts from zero, but the partition number starts from one for normal partitions and five for extended partitions. Note that this is different from earlier versions where both numbers started from zero. For example, partition sda1 is (hd0,1) to GRUB and sdb3 is (hd1,3). In contrast to Linux, GRUB does not consider CD-ROM drives to be hard drives. For example, if using a CD on hdb and a second hard drive on hdc, that second hard drive would still be (hd1).

10.4.3. Setting Up the Configuration

GRUB works by writing data to the first physical track of the hard disk. This area is not part of any file system. The programs there access GRUB modules in the boot partition. The default location is /boot/grub/.

The location of the boot partition is a choice of the user that affects the configuration. One recommendation is to have a separate small (suggested size is 200 MB) partition just for boot information. That way each build, whether LFS or some commercial distro, can access the same boot files and access can be made from any booted system. If you choose to do this, you will need to mount the separate partition, move all files in the current /boot directory (e.g. the linux kernel you just built in the previous section) to the new partition. You will then need to unmount the partition and remount it as /boot. If you do this, be sure to update /etc/fstab.

Using the current lfs partition will also work, but configuration for multiple systems is more difficult.

Using the above information, determine the appropriate designator for the root partition (or boot partition, if a separate one is used). For the following example, it is assumed that the root (or separate boot) partition is sda2.

Install the GRUB files into /boot/grub and set up the boot track:

Warning

The following command will overwrite the current boot loader. Do not run the command if this is not desired, for example, if using a third party boot manager to manage the Master Boot Record (MBR).

grub-install /dev/sda

Note

If the system has been booted using UEFI, grub-install will try to install files for the x86_64-efi target, but those files have not been installed in Chapter 8. If this is the case, add --target i386-pc to the command above.

10.4.4. Creating the GRUB Configuration File

Generate /boot/grub/grub.cfg:

cat > /boot/grub/grub.cfg << "EOF"
# Begin /boot/grub/grub.cfg
set default=0
set timeout=5

insmod ext2
set root=(hd0,2)

menuentry "GNU/Linux, Linux 5.19.2-lfs-11.2" {
        linux   /boot/vmlinuz-5.19.2-lfs-11.2 root=/dev/sda2 ro
}
EOF

Note

From GRUB's perspective, the kernel files are relative to the partition used. If you used a separate /boot partition, remove /boot from the above linux line. You will also need to change the set root line to point to the boot partition.

Note

The GRUB designator for a partition may change if you added or removed some disks (including removable disks like USB thumb devices). The change may cause boot failure because grub.cfg refers to some old designators. If you wish to avoid such a problem, you may use the UUID of partition and filesystem instead of GRUB designator to specify a partition. Run lsblk -o UUID,PARTUUID,PATH,MOUNTPOINT to show the UUID of your filesystems (in UUID column) and partitions (in PARTUUID column). Then replace set root=(hdx,y) with search --set=root --fs-uuid <UUID of the filesystem where the kernel is installed>, and replace root=/dev/sda2 with root=PARTUUID=<UUID of the partition where LFS is built>.

Note that the UUID of a partition and the UUID of the filesystem in this partition is completely different. Some online resources may instruct you to use root=UUID=<filesystem UUID> instead of root=PARTUUID=<partition UUID>, but doing so will require an initramfs which is beyond the scope of LFS.

The name of the device node for a partition in /dev may also change (more unlikely than GRUB designator change though). You can also replace paths to device nodes like /dev/sda1 with PARTUUID=<partition UUID>, in /etc/fstab, to avoid a potential boot failure in case the device node name has changed.

GRUB is an extremely powerful program and it provides a tremendous number of options for booting from a wide variety of devices, operating systems, and partition types. There are also many options for customization such as graphical splash screens, playing sounds, mouse input, etc. The details of these options are beyond the scope of this introduction.

Caution

There is a command, grub-mkconfig, that can write a configuration file automatically. It uses a set of scripts in /etc/grub.d/ and will destroy any customizations that you make. These scripts are designed primarily for non-source distributions and are not recommended for LFS. If you install a commercial Linux distribution, there is a good chance that this program will be run. Be sure to back up your grub.cfg file.

Chapter 11. The End

11.1. The End

Well done! The new LFS system is installed! We wish you much success with your shiny new custom-built Linux system.

It may be a good idea to create an /etc/lfs-release file. By having this file, it is very easy for you (and for us if you need to ask for help at some point) to find out which LFS version is installed on the system. Create this file by running:

echo 11.2 > /etc/lfs-release

Two files describing the installed system may be used by packages that can be installed on the system later, either in binary form or by building them.

The first one shows the status of your new system with respect to the Linux Standards Base (LSB). To create this file, run:

cat > /etc/lsb-release << "EOF"
DISTRIB_ID="Linux From Scratch"
DISTRIB_RELEASE="11.2"
DISTRIB_CODENAME="<your name here>"
DISTRIB_DESCRIPTION="Linux From Scratch"
EOF

The second one contains roughly the same information, and is used by systemd and some graphical desktop environments. To create this file, run:

cat > /etc/os-release << "EOF"
NAME="Linux From Scratch"
VERSION="11.2"
ID=lfs
PRETTY_NAME="Linux From Scratch 11.2"
VERSION_CODENAME="<your name here>"
EOF

Be sure to put some sort of customization for the fields 'DISTRIB_CODENAME' and 'VERSION_CODENAME' to make the system uniquely yours.

11.2. Get Counted

Now that you have finished the book, do you want to be counted as an LFS user? Head over to https://www.linuxfromscratch.org/cgi-bin/lfscounter.php and register as an LFS user by entering your name and the first LFS version you have used.

Let's reboot into LFS now.

11.3. Rebooting the System

Now that all of the software has been installed, it is time to reboot your computer. However, you should be aware of a few things. The system you have created in this book is quite minimal, and most likely will not have the functionality you would need to be able to continue forward. By installing a few extra packages from the BLFS book while still in our current chroot environment, you can leave yourself in a much better position to continue on once you reboot into your new LFS installation. Here are some suggestions:

  • A text mode browser such as Lynx will allow you to easily view the BLFS book in one virtual terminal, while building packages in another.

  • The make-ca package will allow you to set up local trusted anchor certificates, allowing the system to verify SSL certificates provided by remote servers (for example, a website using HTTPS).

  • The GPM package will allow you to perform copy/paste actions in your virtual terminals.

  • If you are in a situation where static IP configuration does not meet your networking requirements, installing a package such as dhcpcd or the client portion of dhcp may be useful.

  • Installing sudo may be useful for building packages as a non-root user and easily installing the resulting packages in your new system.

  • If you want to access your new system from a remote system within a comfortable GUI environment, install openssh.

  • To make fetching files over the internet easier, install wget.

  • To connect to a wireless access point for networking, install wpa_supplicant.

  • Install firmwares if the kernel driver for your hardware require some firmware to function properly.

  • Finally, a review of the following configuration files is also appropriate at this point.

    • /etc/bashrc

    • /etc/dircolors

    • /etc/fstab

    • /etc/hosts

    • /etc/inputrc

    • /etc/profile

    • /etc/resolv.conf

    • /etc/vimrc

    • /root/.bash_profile

    • /root/.bashrc

    • /etc/sysconfig/ifconfig.eth0

Now that we have said that, let's move on to booting our shiny new LFS installation for the first time! First exit from the chroot environment:

logout

Then unmount the virtual file systems:

umount -v $LFS/dev/pts
umount -v $LFS/dev
umount -v $LFS/run
umount -v $LFS/proc
umount -v $LFS/sys

If multiple partitions were created, unmount the other partitions before unmounting the main one, like this:

umount -v $LFS/usr
umount -v $LFS/home
umount -v $LFS

Unmount the LFS file system itself:

umount -v $LFS

Now, reboot the system with:

shutdown -r now

Assuming the GRUB boot loader was set up as outlined earlier, the menu is set to boot LFS 11.2 automatically.

When the reboot is complete, the LFS system is ready for use and more software may be added to suit your needs.

11.4. What Now?

Thank you for reading this LFS book. We hope that you have found this book helpful and have learned more about the system creation process.

Now that the LFS system is installed, you may be wondering What next? To answer that question, we have compiled a list of resources for you.

  • Maintenance

    Bugs and security notices are reported regularly for all software. Since an LFS system is compiled from source, it is up to you to keep abreast of such reports. There are several online resources that track such reports, some of which are shown below:

    • CERT (Computer Emergency Response Team)

      CERT has a mailing list that publishes security alerts concerning various operating systems and applications. Subscription information is available at http://www.us-cert.gov/cas/signup.html.

    • Bugtraq

      Bugtraq is a full-disclosure computer security mailing list. It publishes newly discovered security issues, and occasionally potential fixes for them. Subscription information is available at http://www.securityfocus.com/archive.

  • Beyond Linux From Scratch

    The Beyond Linux From Scratch book covers installation procedures for a wide range of software beyond the scope of the LFS Book. The BLFS project is located at https://www.linuxfromscratch.org/blfs/view/11.2/.

  • LFS Hints

    The LFS Hints are a collection of educational documents submitted by volunteers in the LFS community. The hints are available at https://www.linuxfromscratch.org/hints/downloads/files/.

  • Mailing lists

    There are several LFS mailing lists you may subscribe to if you are in need of help, want to stay current with the latest developments, want to contribute to the project, and more. See Chapter 1 - Mailing Lists for more information.

  • The Linux Documentation Project

    The goal of The Linux Documentation Project (TLDP) is to collaborate on all of the issues of Linux documentation. The TLDP features a large collection of HOWTOs, guides, and man pages. It is located at http://www.tldp.org/.

Part V. Appendices

Appendix A. Acronyms and Terms

ABI

Application Binary Interface

ALFS

Automated Linux From Scratch

API

Application Programming Interface

ASCII

American Standard Code for Information Interchange

BIOS

Basic Input/Output System

BLFS

Beyond Linux From Scratch

BSD

Berkeley Software Distribution

chroot

change root

CMOS

Complementary Metal Oxide Semiconductor

COS

Class Of Service

CPU

Central Processing Unit

CRC

Cyclic Redundancy Check

CVS

Concurrent Versions System

DHCP

Dynamic Host Configuration Protocol

DNS

Domain Name Service

EGA

Enhanced Graphics Adapter

ELF

Executable and Linkable Format

EOF

End of File

EQN

equation

ext2

second extended file system

ext3

third extended file system

ext4

fourth extended file system

FAQ

Frequently Asked Questions

FHS

Filesystem Hierarchy Standard

FIFO

First-In, First Out

FQDN

Fully Qualified Domain Name

FTP

File Transfer Protocol

GB

Gigabytes

GCC

GNU Compiler Collection

GID

Group Identifier

GMT

Greenwich Mean Time

HTML

Hypertext Markup Language

IDE

Integrated Drive Electronics

IEEE

Institute of Electrical and Electronic Engineers

IO

Input/Output

IP

Internet Protocol

IPC

Inter-Process Communication

IRC

Internet Relay Chat

ISO

International Organization for Standardization

ISP

Internet Service Provider

KB

Kilobytes

LED

Light Emitting Diode

LFS

Linux From Scratch

LSB

Linux Standard Base

MB

Megabytes

MBR

Master Boot Record

MD5

Message Digest 5

NIC

Network Interface Card

NLS

Native Language Support

NNTP

Network News Transport Protocol

NPTL

Native POSIX Threading Library

OSS

Open Sound System

PCH

Pre-Compiled Headers

PCRE

Perl Compatible Regular Expression

PID

Process Identifier

PTY

pseudo terminal

QOS

Quality Of Service

RAM

Random Access Memory

RPC

Remote Procedure Call

RTC

Real Time Clock

SBU

Standard Build Unit

SCO

The Santa Cruz Operation

SHA1

Secure-Hash Algorithm 1

TLDP

The Linux Documentation Project

TFTP

Trivial File Transfer Protocol

TLS

Thread-Local Storage

UID

User Identifier

umask

user file-creation mask

USB

Universal Serial Bus

UTC

Coordinated Universal Time

UUID

Universally Unique Identifier

VC

Virtual Console

VGA

Video Graphics Array

VT

Virtual Terminal

Appendix B. Acknowledgments

We would like to thank the following people and organizations for their contributions to the Linux From Scratch Project.

  • Gerard Beekmans <gerard AT linuxfromscratch D0T org> – LFS Creator

  • Bruce Dubbs <bdubbs AT linuxfromscratch D0T org> – LFS Managing Editor

  • Jim Gifford <jim AT linuxfromscratch D0T org> – CLFS Project Co-Leader

  • Pierre Labastie <pierre AT linuxfromscratch D0T org> – BLFS Editor and ALFS Lead

  • DJ Lucas <dj AT linuxfromscratch D0T org> – LFS and BLFS Editor

  • Ken Moffat <ken AT linuxfromscratch D0T org> – BLFS Editor

  • Countless other people on the various LFS and BLFS mailing lists who helped make this book possible by giving their suggestions, testing the book, and submitting bug reports, instructions, and their experiences with installing various packages.

Translators

  • Manuel Canales Esparcia <macana AT macana-es D0T com> – Spanish LFS translation project

  • Johan Lenglet <johan AT linuxfromscratch D0T org> – French LFS translation project until 2008

  • Jean-Philippe Mengual <jmengual AT linuxfromscratch D0T org> – French LFS translation project 2008-2016

  • Julien Lepiller <jlepiller AT linuxfromscratch D0T org> – French LFS translation project 2017-present

  • Anderson Lizardo <lizardo AT linuxfromscratch D0T org> – Portuguese LFS translation project

  • Thomas Reitelbach <tr AT erdfunkstelle D0T de> – German LFS translation project

Mirror Maintainers

North American Mirrors

South American Mirrors

European Mirrors

  • Guido Passet <guido AT primerelay D0T net> – nl.linuxfromscratch.org mirror

  • Bastiaan Jacques <baafie AT planet D0T nl> – lfs.pagefault.net mirror

  • Sven Cranshoff <sven D0T cranshoff AT lineo D0T be> – lfs.lineo.be mirror

  • Scarlet Belgium – lfs.scarlet.be mirror

  • Sebastian Faulborn <info AT aliensoft D0T org> – lfs.aliensoft.org mirror

  • Stuart Fox <stuart AT dontuse D0T ms> – lfs.dontuse.ms mirror

  • Ralf Uhlemann <admin AT realhost D0T de> – lfs.oss-mirror.org mirror

  • Antonin Sprinzl <Antonin D0T Sprinzl AT tuwien D0T ac D0T at> – at.linuxfromscratch.org mirror

  • Fredrik Danerklint <fredan-lfs AT fredan D0T org> – se.linuxfromscratch.org mirror

  • Franck <franck AT linuxpourtous D0T com> – lfs.linuxpourtous.com mirror

  • Philippe Baque <baque AT cict D0T fr> – lfs.cict.fr mirror

  • Vitaly Chekasin <gyouja AT pilgrims D0T ru> – lfs.pilgrims.ru mirror

  • Benjamin Heil <kontakt AT wankoo D0T org> – lfs.wankoo.org mirror

  • Anton Maisak <info AT linuxfromscratch D0T org D0T ru> – linuxfromscratch.org.ru mirror

Asian Mirrors

  • Satit Phermsawang <satit AT wbac D0T ac D0T th> – lfs.phayoune.org mirror

  • Shizunet Co.,Ltd. <info AT shizu-net D0T jp> – lfs.mirror.shizu-net.jp mirror

  • Init World <http://www.initworld.com/> – lfs.initworld.com mirror

Australian Mirrors

  • Jason Andrade <jason AT dstc D0T edu D0T au> – au.linuxfromscratch.org mirror

Former Project Team Members

  • Christine Barczak <theladyskye AT linuxfromscratch D0T org> – LFS Book Editor

  • Archaic <[email protected]> – LFS Technical Writer/Editor, HLFS Project Leader, BLFS Editor, Hints and Patches Project Maintainer

  • Matthew Burgess <matthew AT linuxfromscratch D0T org> – LFS Project Leader, LFS Technical Writer/Editor

  • Nathan Coulson <nathan AT linuxfromscratch D0T org> – LFS-Bootscripts Maintainer

  • Timothy Bauscher

  • Robert Briggs

  • Ian Chilton

  • Jeroen Coumans <jeroen AT linuxfromscratch D0T org> – Website Developer, FAQ Maintainer

  • Manuel Canales Esparcia <manuel AT linuxfromscratch D0T org> – LFS/BLFS/HLFS XML and XSL Maintainer

  • Alex Groenewoud – LFS Technical Writer

  • Marc Heerdink

  • Jeremy Huntwork <jhuntwork AT linuxfromscratch D0T org> – LFS Technical Writer, LFS LiveCD Maintainer

  • Bryan Kadzban <bryan AT linuxfromscratch D0T org> – LFS Technical Writer

  • Mark Hymers

  • Seth W. Klein – FAQ maintainer

  • Nicholas Leippe <nicholas AT linuxfromscratch D0T org> – Wiki Maintainer

  • Anderson Lizardo <lizardo AT linuxfromscratch D0T org> – Website Backend-Scripts Maintainer

  • Randy McMurchy <randy AT linuxfromscratch D0T org> – BLFS Project Leader, LFS Editor

  • Dan Nicholson <dnicholson AT linuxfromscratch D0T org> – LFS and BLFS Editor

  • Alexander E. Patrakov <alexander AT linuxfromscratch D0T org> – LFS Technical Writer, LFS Internationalization Editor, LFS Live CD Maintainer

  • Simon Perreault

  • Scot Mc Pherson <scot AT linuxfromscratch D0T org> – LFS NNTP Gateway Maintainer

  • Douglas R. Reno <renodr AT linuxfromscratch D0T org> – Systemd Editor

  • Ryan Oliver <ryan AT linuxfromscratch D0T org> – CLFS Project Co-Leader

  • Greg Schafer <gschafer AT zip D0T com D0T au> – LFS Technical Writer and Architect of the Next Generation 64-bit-enabling Build Method

  • Jesse Tie-Ten-Quee – LFS Technical Writer

  • James Robertson <jwrober AT linuxfromscratch D0T org> – Bugzilla Maintainer

  • Tushar Teredesai <tushar AT linuxfromscratch D0T org> – BLFS Book Editor, Hints and Patches Project Leader

  • Jeremy Utley <jeremy AT linuxfromscratch D0T org> – LFS Technical Writer, Bugzilla Maintainer, LFS-Bootscripts Maintainer

  • Zack Winkles <zwinkles AT gmail D0T com> – LFS Technical Writer

Appendix C. Dependencies

Every package built in LFS relies on one or more other packages in order to build and install properly. Some packages even participate in circular dependencies, that is, the first package depends on the second which in turn depends on the first. Because of these dependencies, the order in which packages are built in LFS is very important. The purpose of this page is to document the dependencies of each package built in LFS.

For each package that is built, there are three, and sometimes up to five types of dependencies listed below. The first lists what other packages need to be available in order to compile and install the package in question. The second lists the packages that must be available when any programs or libraries from the package are used at runtime. The third lists what packages, in addition to those on the first list, need to be available in order to run the test suites. The fourth list of dependencies are packages that require this package to be built and installed in its final location before they are built and installed. In most cases, this is because these packages will hard code paths to binaries within their scripts. If not built in a certain order, this could result in paths of /tools/bin/[binary] being placed inside scripts installed to the final system. This is obviously not desirable.

The last list of dependencies are optional packages that are not addressed in LFS, but could be useful to the user. These packages may have additional mandatory or optional dependencies of their own. For these dependencies, the recommended practice is to install them after completion of the LFS book and then go back and rebuild the LFS package. In several cases, re-installation is addressed in BLFS.

Acl

Installation depends on: Attr, Bash, Binutils, Coreutils, GCC, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo
Required at runtime: Attr and Glibc
Test suite depends on: Automake, Diffutils, Findutils, and Libtool
Must be installed before: Coreutils, Sed, Tar, and Vim
Optional dependencies: None

Attr

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Perl, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Automake, Diffutils, Findutils, and Libtool
Must be installed before: Acl and Libcap
Optional dependencies: None

Autoconf

Installation depends on: Bash, Coreutils, Grep, M4, Make, Perl, Sed, and Texinfo
Required at runtime: Bash, Coreutils, Grep, M4, Make, Sed, and Texinfo
Test suite depends on: Automake, Diffutils, Findutils, GCC, and Libtool
Must be installed before: Automake
Optional dependencies: Emacs

Automake

Installation depends on: Autoconf, Bash, Coreutils, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo
Required at runtime: Bash, Coreutils, Grep, M4, Sed, and Texinfo
Test suite depends on: Binutils, Bison, Bzip2, DejaGNU, Diffutils, Expect, Findutils, Flex, GCC, Gettext, Gzip, Libtool, and Tar
Must be installed before: None
Optional dependencies: None

Bash

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, Patch, Readline, Sed, and Texinfo
Required at runtime: Glibc, Ncurses, and Readline
Test suite depends on: Expect and Shadow
Must be installed before: None
Optional dependencies: Xorg

Bc

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, and Readline
Required at runtime: Glibc, Ncurses, and Readline
Test suite depends on: Gawk
Must be installed before: Linux
Optional dependencies: None

Binutils

Installation depends on: Bash, Binutils, Coreutils, Diffutils, File, Flex, Gawk, GCC, Glibc, Grep, Make, Perl, Sed, Texinfo, and Zlib
Required at runtime: Glibc and Zlib
Test suite depends on: DejaGNU and Expect
Must be installed before: None
Optional dependencies: Elfutils

Bison

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Perl, and Sed
Required at runtime: Glibc
Test suite depends on: Diffutils, Findutils, and Flex
Must be installed before: Kbd and Tar
Optional dependencies: Doxygen

Bzip2

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make, and Patch
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: File
Optional dependencies: None

Check

Installation depends on: Gawk, GCC, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Gawk
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Coreutils

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep, Libcap, Make, OpenSSL, Patch, Perl, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Diffutils, E2fsprogs, Findutils, Shadow, and Util-linux
Must be installed before: Bash, Diffutils, Eudev, Findutils, and Man-DB
Optional dependencies: Expect.pm and IO::Tty

DejaGNU

Installation depends on: Bash, Coreutils, Diffutils, Expect, GCC, Grep, Make, Sed, and Texinfo
Required at runtime: Expect and Bash
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Diffutils

Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Perl
Must be installed before: None
Optional dependencies: None

E2fsprogs

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Gzip, Make, Sed, Texinfo, and Util-linux
Required at runtime: Glibc and Util-linux
Test suite depends on: Procps-ng and Psmisc
Must be installed before: None
Optional dependencies: None

Eudev

Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Gperf, Make, Sed, and Util-linux
Required at runtime: Glibc, Kmod, Xz, Util-linux, and Zlib.
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Expat

Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, and Sed
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: Python and XML::Parser
Optional dependencies: None

Expect

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Patch, Sed, and Tcl
Required at runtime: Glibc and Tcl
Test suite depends on: None
Must be installed before: None
Optional dependencies: Tk

File

Installation depends on: Bash, Binutils, Bzip2, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, Xz, and Zlib
Required at runtime: Glibc, Bzip2, Xz, and Zlib
Test suite depends on: None
Must be installed before: None
Optional dependencies: libseccomp

Findutils

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Glibc
Test suite depends on: DejaGNU, Diffutils, and Expect
Must be installed before: None
Optional dependencies: None

Flex

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Patch, Sed, and Texinfo
Required at runtime: Bash, Glibc, and M4
Test suite depends on: Bison and Gawk
Must be installed before: Binutils, IProute2, Kbd, Kmod, and Man-DB
Optional dependencies: None

Gawk

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep, Make, MPFR, Patch, Readline, Sed, and Texinfo
Required at runtime: Bash, Glibc, and Mpfr
Test suite depends on: Diffutils
Must be installed before: None
Optional dependencies: libsigsegv

GCC

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, GMP, Grep, M4, Make, MPC, MPFR, Patch, Perl, Sed, Tar, Texinfo, and Zstd
Required at runtime: Bash, Binutils, Glibc, Mpc, and Python
Test suite depends on: DejaGNU, Expect, and Shadow
Must be installed before: None
Optional dependencies: GNAT and ISL

GDBM

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Grep, Make, and Sed
Required at runtime: Bash, Glibc, and Readline
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gettext

Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, Sed, and Texinfo
Required at runtime: Acl, Bash, Gcc, and Glibc
Test suite depends on: Diffutils, Perl, and Tcl
Must be installed before: Automake and Bison
Optional dependencies: None

Glibc

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep, Gzip, Linux API Headers, Make, Perl, Python, Sed, and Texinfo
Required at runtime: None
Test suite depends on: File
Must be installed before: None
Optional dependencies: None

GMP

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, M4, Make, Sed, and Texinfo
Required at runtime: GCC and Glibc
Test suite depends on: None
Must be installed before: MPFR and GCC
Optional dependencies: None

Gperf

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, and Make
Required at runtime: GCC and Glibc
Test suite depends on: Diffutils and Expect
Must be installed before: None
Optional dependencies: None

Grep

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Patch, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Gawk
Must be installed before: Man-DB
Optional dependencies: PCRE and libsigsegv

Groff

Installation depends on: Bash, Binutils, Bison, Coreutils, Gawk, GCC, Glibc, Grep, Make, Patch, Sed, and Texinfo
Required at runtime: GCC, Glibc, and Perl
Test suite depends on: No test suite available
Must be installed before: Man-DB and Perl
Optional dependencies: ghostscript and Uchardet

GRUB

Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, Sed, Texinfo, and Xz
Required at runtime: Bash, GCC, Gettext, Glibc, Xz, and Sed.
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gzip

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Glibc
Test suite depends on: Diffutils and Less
Must be installed before: Man-DB
Optional dependencies: None

Iana-Etc

Installation depends on: Coreutils
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: Perl
Optional dependencies: None

Inetutils

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, Texinfo, and Zlib
Required at runtime: GCC, Glibc, Ncurses, and Readline
Test suite depends on: None
Must be installed before: Tar
Optional dependencies: None

Intltool

Installation depends on: Bash, Gawk, Glibc, Make, Perl, Sed, and XML::Parser
Required at runtime: Autoconf, Automake, Bash, Glibc, Grep, Perl, and Sed
Test suite depends on: Perl
Must be installed before: None
Optional dependencies: None

IProute2

Installation depends on: Bash, Bison, Coreutils, Flex, GCC, Glibc, Make, Libcap, Libelf, Linux API Headers, and Zlib
Required at runtime: Bash, Coreutils, Glibc, Libcap, Libelf, and Zlib
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: Berkeley DB and iptables

Jinja2

Installation depends on: MarkupSafe and Python
Required at runtime: MarkupSafe and Python
Test suite depends on: No test suite available
Must be installed before: Systemd
Optional dependencies: None

Kbd

Installation depends on: Bash, Binutils, Bison, Check, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, Patch, and Sed
Required at runtime: Bash, Coreutils, and Glibc
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Kmod

Installation depends on: Bash, Binutils, Bison, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, OpenSSL, Pkg-config, Sed, Xz, and Zlib
Required at runtime: Glibc, Xz, and Zlib
Test suite depends on: No test suite available
Must be installed before: Eudev
Optional dependencies: None

Less

Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed
Required at runtime: Glibc and Ncurses
Test suite depends on: No test suite available
Must be installed before: Gzip
Optional dependencies: PCRE

Libcap

Installation depends on: Attr, Bash, Binutils, Coreutils, GCC, Glibc, Perl, Make, and Sed
Required at runtime: Glibc
Test suite depends on: None
Must be installed before: IProute2 and Shadow
Optional dependencies: Linux-PAM

Libelf

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, and Make
Required at runtime: Glibc and Zlib
Test suite depends on: None
Must be installed before: IProute2 and Linux
Optional dependencies: None

Libffi

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Sed
Required at runtime: Glibc
Test suite depends on: DejaGnu
Must be installed before: Python
Optional dependencies: None

Libpipeline

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Check
Must be installed before: Man-DB
Optional dependencies: None

Libtool

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Autoconf, Automake, Bash, Binutils, Coreutils, File, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: Autoconf, Automake, and Findutils
Must be installed before: None
Optional dependencies: None

Linux

Installation depends on: Bash, Bc, Binutils, Coreutils, Diffutils, Findutils, GCC, Glibc, Grep, Gzip, Kmod, Libelf, Make, Ncurses, OpenSSL, Perl, and Sed
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: cpio

Linux API Headers

Installation depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Gzip, Make, Perl, and Sed
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

M4

Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Bash and Glibc
Test suite depends on: Diffutils
Must be installed before: Autoconf and Bison
Optional dependencies: libsigsegv

Make

Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Required at runtime: Glibc
Test suite depends on: Perl and Procps-ng
Must be installed before: None
Optional dependencies: Guile

Man-DB

Installation depends on: Bash, Binutils, Bzip2, Coreutils, Flex, GCC, GDBM, Gettext, Glibc, Grep, Groff, Gzip, Less, Libpipeline, Make, Sed, and Xz
Required at runtime: Bash, GDBM, Groff, Glibc, Gzip, Less, Libpipeline, and Zlib
Test suite depends on: Util-linux
Must be installed before: None
Optional dependencies: libseccomp

Man-Pages

Installation depends on: Bash, Coreutils, and Make
Required at runtime: None
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

MarkupSafe

Installation depends on: Python
Required at runtime: Python
Test suite depends on: No test suite available
Must be installed before: Jinja2
Optional dependencies: None

Meson

Installation depends on: Ninja and Python
Required at runtime: Python
Test suite depends on: No test suite available
Must be installed before: Systemd
Optional dependencies: None

MPC

Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, MPFR, Sed, and Texinfo
Required at runtime: Glibc, GMP, and MPFR
Test suite depends on: None
Must be installed before: GCC
Optional dependencies: None

MPFR

Installation depends on: Bash